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16 Abetrct

The feasibility and effectiveness of using an integrated system for the
adaptive control of a surface ship along a prescribed path in restricted
waters is investigated. The prescribed path is restricted to straight line
segments which would extend between isolated turning maneuvers. The controller
consists of four major components arranged in two loops: an inner or control
loop and an outer or gain update loop. The inner loop consists of a Kalman
state estimator and an optimal stochastic control law which would provide
effective control when subjected to disturbances and measurement noise. The
outer loop estimates the parameters of the system equations of motion to enable
the controller to adapt itself for the changes in ship characteristics which
take place due to changes in the ship operating condition and environment.
The Brownian motion process is shown to be an effective model for bias distur-
bances in the design of the Kalman filter. A design criterion is proposed for
the selection of the appropriate value of the diffusion coefficient to achieve
the desired character of the disturbance model. A control loop designed using
this approach is shown to perform very effectively with typical disturbances.
The transient response of the control loop is, however, sensitive to variations
in two of the coefficients in the equations of motion. Weighted Least-Squares
(WLS) and Minimum Variance (MVE) parameter estimation "lgorlthms, which might
be used to estimate these coefficients on-line, are investigated. For effec-
tive parameter estimation, the ship must be excited to a, sufficient level of
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16. Abstract (Continued)

motion using an open-loop rudder command. Adaptive path control would, there-
fore, have to consist of alternate periods of open-loop control and closed-
loop path control. The WLS algorithm is shown to be more appropriate for
off-line estimation of time-invariant parameters. The MVE algorithm shows
promise as an effective on-line ship parameter estimator for use in an
adaptive system.
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Abstract

The feasibility and effectiveness of using an integrated system for the

adaptive control of a surface ship along a prescribed path in restricted

waters is investigated. The prescribed path is restricted to straight line

segments which would extend between isolated turning maneuvers. The controller

consists of four major components arranged in two loops: an inner or control

loop and an outer or gain update loop. The inner loop consists of a Kalman

state estimator and an optimal stochastic control law which would provide

effective control when subjected to disturbances and measurement noise. The

outer loop estimates the parameters of the system equations of motion to enable
the controller to adapt itself for the changes in ship characteristics which

take place due to changes in the ship operating condition and environment.

The Brownian motion process is shown to be an effective model for bias distur-

bances in the design of the Kalman filter. A design criterion is proposed for
the selection of the appropriate value of the diffusion coefficient to achieve

*the desired character of the disturbance model. A control loop designed using

this approach is shown to perform very effectively with typical disturbances.

The transient response of the control loop is, however, sensitive to variations

in two of the coefficients in the equations of motion. Weighted Least-Squares

(WLS) and Minimum Variance (MVE) parameter estimation algorithms, which might
be used to estimate these coefficients on-line, are investigated. For effec-

tive parameter estimation, the ship must be excited to a sufficient level of

motion using an open-loop rudder command. Adaptive path control would, there-

fore, have to consist of alternate periods of open-loop control and closed-

loop path control. The WLS algorithm is shown to be more appropriate for

off-line estimation of time-invariant parameters. The MVE algorithm shows

promise as an effective on-line ship parameter estimator for use in an adaptive

system.
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Nomenclature

A state weighting matrix

a coefficient in Bech's equation, eq.(1)

aij elements of state weighting matrix

B control weighting matrix, ship beam [m], or generalized
noise covarianc, matrix eq. (101)

b coefficient in Bech's equation, eq. (1)

bij elements of control weighting matrix

C optimal control gain matrix

Cdefined by eq. (84)

C defined by eq. (85)
Vk
Ck  defined by eq. (86)

D defined by eq. (84)

^k
Dk  defined by eq. (87)

Dk defined by eq. (88)

E Balchen's disturbance environment matrix, eq. (58)

E[...] expectation operation

E z..] conditional expectation operation w.r.t. Zkl

4-state system open-loop dynamics matrix

F'=I - At F discrete form of F

F eestimator open-loop dynamics matrixe

F =U/vgL Froude number based on ship lengthn
F system open-loop dynamics matrix

s

fij element i, j of F, Fel or Fs

G 4-state system estimator control distribution matrix

G'=At G discrete form of G

Gkl or G generalized measure of noise power, eq. (112)

Ge  estimator control distribution matrix

G system control distribution matrix
2

s acceleration of gravity [m/s 2 ]

H water depth [ml

H estimator measurement scaling matrixe

H9  system measurement scaling matrix

Identity matrix

k innovation vector
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I z 5ship yaw mass moment of inertia [kgm
2

V =21 /pL nondimensional yaw mass moment of inertia
zz zz
J optimal control or Weighted Least-Squares cost function

J RMS cost, eq. (70)

J 5yaw added mass moment of inertia [kgm 2

iz=2Jz/pL nondimensional yaw added mass moment of inertia
zz zz
K Kalman-Bucy state estimator gain matrix

K MVE parameter estimator gain matrix

k or k' discrete time index

L ship length between perpendiculars [m]

LB length of batch update calculation period

LU length of the update cycle

LW length of the data window

identification frequency

M coefficient matrix of Euler-Lagrange equations, eq. (36)

MI coefficient matrix of Euler-Lagrange equations, eq. (50)

m control vector dimension or ship mass (kg];

m'=2m/OL3  nondimensional ship mass

m y sway added mass [kg]

=2m/ L 3  nondimensional sway added mass

N total yaw moment or yaw moment disturbance tNm]

N'=2N/L3 U2 nondimensional N

N derivative of yaw moment w.r.t. yaw angular velocity
r [Nms/rad]

N'=2N /pL 4U nondimensional N
r r r
N derivative of yaw moment w.r.t. lateral velocity [Ns]

N- derivative of yaw moment w.r.t. lateral acceleration [Nsv
N . Bderivative of yaw moment w.r.t. drift angle [Nm/rad]

N'=2NB/pL3U 2  nondimensional N

derivative of yaw moment w.r.t. drift angle [Nm/rad]

N.= 2N /pL U nondimensional N

N5  derivative of yaw moment w.r.t. rudder angle [Nm/rad]

N'=2N /cL U nondimensional N6

N; derivative of yaw moment w.r.t. rudder angle rate (Nms/rad]

n dimension of state vector

n white noise disturbance vector eq. (58)

ne dimension of augmented state vector
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ns dimension of state vector

P error covariance matrix in estimate of augmented state
x' or error covariance matrix in estimate of parameter
vector

Pk discrete form of P

P steady-state value of P

p dimension of measurement vector

Pparameter vector

Pi component of parameter vector

p9or pu limits on parameter estimates, Table 10
A -

p parameter estimate vector
IV A
E7=- parameter estimate error vector

P assumed parameter mean

Q process disturbance power spectral density matrix

Qw process disturbance covariance matrix

q dimension of disturbance vector or disturbance spectral
density

q disturbance covariance

qii diagonal element i,i of Q

R measurement noise power spectral density matrix or
covariance matrix

R eq,k-or Req equivalent noise spectral density matrix eq. (101)

r=dy/dt yaw angular velocity [rad/s]

r'=rL/U nondimensional yaw angular velocity

re nondimensional r of model simulation
m

yaw angular acceleration frad/s 2

2'=rL2/U2 nondimensional yaw angular acceleration

r.. diagonal element i,i of R
Ii

S solution to optimal control Riccati equation or slope
or maximum rate of change of disturbance

S steady-state value of S

3 vector of known parameters (here just 1)

ship draft [m]

T nondimensional correlation time of yaw moment disturbance

T nondimensional correlation time of sway force disturbance
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T nondimensional rudder control time constant
r

t time [s]

t'=tU/L nondimensional time

Lt integration time step, sample time interval

U ship speed [m/s]

Uk-1or U weighted covariance matrix, eq. (101)

u longitudinal component of ship speed [m/s]

U control vector

i v lateral component of ship speed [m/s]

v' nondimensional current velocity
c

v or v' measurement noise vector

Wk weighting matrix in WLS cost function

w process disturbance vector

Wik elements of Wk

wN or w white noise driving disturbance models for N and Y

X+,X .XX: eigenvectors, eq. (37) and (51)

x longitudinal axis of ship

x state vector

xf augmented state vector

x estimate of augmented state vector

x simulated state vector used in the WLS algorithm

Y total sway force or sway force disturbance [NJ

2 2
Y'=2Y/pL U nondimensional Y

Y derivative of sway force w.r.t. yaw angular velocity
r [Ns/rad]

Y'=2Y /pL 3U nondimensional Y
r r r
Y- derivative of sway force w.r.t. yaw angular accelerationr [Ns2/rad ]

Y*'=2Y /pL4 nondimensional Y f
r rr [sm

Y v derivative of sway force w.r.t, lateral velocity [Ns/m]

Y11 derivative of sway force w.r.t. drift angle [N/rad]

Y'=2Y/pL2U 2  nondimensionsl Y

Y, derivative of sway force w.r.t. rudder angle [N/rad]

YS=2Y /pL2U2 nondimensional Y

Y. derivative of sway force w.r.t. rudder angle rate

[Ns/rad]
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I
y transverse axis of ship

Zk- 1  whole measurement history to time k-i

z measurement vector for control loop

measurement vector for gain update loop

z--=z-Dk I  1pseudomeasurement vector

I. aassumed parameter standard deviation

drift angle [rad] relative to earth

5' effective drift angle relative to water
e
B' nondimensional S of model simulation
m
8drift angular velocity [rad/s]

8'=BL/U nondimensional drift angular velocity

r 4-state system disturbance distribution matrix

r system disturbance distribution matrix

r estimator disturbance distribution matrix
e

r'=Atr discrete form of F

Yij element i,j of F

5=6' rudder angle [rad]

c =6C commanded rudder angle [rad]

5(t-:) Dirac delta function

numerical parameter in eq. (59)

lateral offset from nominal track [m]

fl'=ri/L nondimensional n

nk Gaussian white sequence in parameter model, eq. (83)

no nondimensional n of model simulation
m
K coefficient in Bech's equation, eq. (1)

A ,A ,A',A' eigenvectors, eq. (37) and (51)

nondimensional eigenvalues1

position along nominal track Em]

Jordan-form eigenvector

water density [kg/m

measurement noise standard deviation vector used in

simulation (elemento !)

t dummy time variable or correlation time

time constant in Bech's equation, eq. (1), or correlation
time
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parameter diffusion coefficient matrix

diagonal elements, of t

X and ' modal matrices eqs. (37)and (51)

=€' heading angle (rad]

heading angle of model simulationm
C..) vector quantity

derivative w.r.t. time

(...) steady-state value of quantity, t='

(...) root mean square (RMS) value or assumed, constant value

of quantity

(...) mean value of quantity

initial value of quantity, desired value of quantity
o on prescribed path, or acceptable value of quantity

used in forming A and B weighting matrices
T... transpose of a matrix

f[... ]l inverse of a matrix
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1. Introduction

The problem of controlling surface ships along prescribed paths in

maneuvering situations is becoming increasingly important from operational,

safety, and environmental viewpoints. In these situations, ships are

subjected to short-term, essentially zero-mean disturbances due to passinq

ships, current and wind variations, waves, and bank and bottom changes. Ships

are also subject to more long-term, non-zero-mean disturbances due to current,

wind, second-order wave forces, and banks. The dynamic characteristics of the

ships also change significantly depending on depth-under-keel, draft, trim,

and speed. These maneuvering situations can place severe demands on pilots,

conning officers, and helmsmen thus making some form of automated control

desirable or perhaps even necessary in the future.

In this report, we investigate the use of two types of adaptive control-

lers for the path control of surface ships in restricted waters. In this

context, restricted waters include straits, channels, harbors, canals, rivers,

and harbors where the ship must steer a prescribed path and not just maintain

a prescribed heading. In our earlier work,l we investigated the use of non-

adaptive, optimal stochastic controllers for this purpose. These control

systems consisted of a steady-state Kalman filter and a steady-state optimal

state feedback controller. The Kalman filter uses noisy measurements to

generate an unbiased estimate of the state which is then used by the controller

to generate the rudder command. These controllers were shown to provide

effective control when a ship is subjected to short-term, essentially zero-

mean disturbances. Our earlier work did not produce controllers which could

accommodate more long-term disturbances without a mean offset from the desired

path. We also showed the desirability of an adaptive system which could

automatically account for changes in the dynamic characteristics of the ship

due to changes in depth-under-keel or other operating conditions.

In this work, we develop surface ship path controllers which can accom-

modate long-term disturbances with a zero-mean offset from the path and which

can adapt for changes in the dynamic characteristics of the ship. Our overall

approach is shown schematically in Fig. 1. The control system consists of

four major components which are arranged into two loops. The inner or control

loop consists of a steady-state Kalman filter or state estimator and a steady-

state optimal state feedback controller. This inner loop is similar to the

--



control systems used in our earlier work' except that the design used here

can accommodate long-term disturbances. The outer or gain update loop con-

sists of an on-line parameter estimator and a second function which recalcu-

lates the steady-state filter and controller gains using the latest estimates

of the ship parameters. The gain update loop would be implemented batch-wise

or at a slower rate than the control loop. Thus, the control loop uses piece-

wise constant gains. The control and gain update loops would both be imple-

mented in an onboard digital computer.

disturbances noiseS N,Y

Ssteering rudder 1  oultput

PM gear ageship 20sensors

rudder -- influences changing

command 6 CONTROL LOOP ship characteristics

g o ptimal state Kalman measurements z'
controller ssmati o tateistma - estimator

controlle r ferr e r wo
en g to pffe t e r o ntr K GAi N UPDATE LO OP

o gain update parameter parameter measurements z '

calculation estimate p estimator

Figure 1. Overall Schematic of Adaptive Path Controller

A number of approaches can be taken to develop an adaptive ship path

controller. The preferred approach would be a design which would be robust

enough to provide effective control under all ship operating conditions with-

out adjustment. In general, this is not feasible. For years, ship heading

autopilots have included manual deadband and gain adjustments to accommodate

changing sea states. This approach can provide only limited adaptation and

requires proper operator action. An alternative approach would be to have

-2-



controller gains preprogrammed as functions of a few operating conditions such

as depth-to-draft ratio H/T and draft. This approach would be feasible but

could not cover all variables and would require more extensive knowledge of

ship characteristics than is usually available. The final approach, which

we use here, is to have the controller automatically establish the predomi-

nant part of the ship dynamics on-line thus permitting adaptation to changing

conditions.

Work has been underway in recent years on the development of adaptive

ship heading autopilots. Development in The Netherlands began with simplified

versions of Bech's second-order turning rate (i) equation; i.e.,

""+ i+ ! + (a 3 + bi) ( ) (1)
TI TI2 1 2T

Honderd and Winkelman 2 assumed that r 3=0 and that only b varies with water

depth. They designed a simple model reference adaptive controller for heading

control using a sensitivity model approach. van Amerongen and Udink ten

Cate 3 ,4 developed a second model reference adaptive controller using a

stability (Liapunov) approach. van Amerongen, Nieuwenhuis, and Udink ten

Cate 5 also reported the development of a model reference adaptive controller

usinq a gradient based method. In this latter work, the 6 term in eq. (1)

was retained and both a and b were assumed to vary with depth. Some of

these heading autopilots have been successfully tested at sea. van Ameronqen

and van Nauta Lemke6 reported the most recent Dutch work on model reference

type adaptive heading autopilots in 1978.

In contrast to the Dutch work, a number of recent heading autopilot

designs include adaptive features which are preprogrammed; i.e., open-loop

schedules which are prescribed in advanct?. Oldenbui; 7 ieicrilw'i aii autopi,t

which adapts for speed, depth-under-keel and sea state in this manner. Ware,

Fields, and Bozzi 8 describe an autopilot which includes a pair of parallel

notch filters in which the notch frequencies are scheduled as a function of

vessel speed in order to provide adaptation to changes in wave encounter

frequency. Sugimoto and Kojima9 report another example of a recent autopilot

design with preprogrammed gain adjustment. Their autopilot is designed to

adapt for loading condition, speed, and sea-state.

-3-
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A third direction in adaptive heading autopilot development has evolved

from the work of Astr8m in Sweden. Astr~m1 0 recently demnonstrated the need

for adaptive ship heading controllers and noted that K8il1str6m had used the

approach presented by Istrm, et alI'' 12 to design adaptive heading aito-

pilots for a number of large tankers. He noted that these have been tested

successfully and that one had been operating for more than one year at sea

(1976). KAllstrbm and his colleagues13 reported on this work in 1977. In

this approach, the system is modeled as a dis.crete, single-input, single-

output system (auto regressive moving average formulation) disturbed by white

noise. The unknown system parameters are then estimated by recursive least-

squares, extended least-squares or maximum likelihood schemes. A minimum

output variance control law is used. Volta and Tiano I' have also developed

adaptive heading controllers based on the work of Astr6m and Wittenmark. I I

Simulation of these controllers was repo ted by Brink, Baas, Tiano, and

Volta 1 5 in 1978.

In this work, we are concerned with path control instead of heading control

of the ship. Our approach alsc aseS; multi-variable instead of single-input,

single-output methods. In re.tArijtid watk.rs whert, path control is of

interest, the conditions which t[tei th. ,haracter i.;t i's of the shli L , such as

witer depth, 'av change tairly i * ill, ,mjIrfd 0' tht- ynamlics of tle , ship.

This creatts a diffluit ori- ltn ai,,,r, . r - t im,it t,'mi,t,*oleim. ofi-line

system iderItfL.Itir n liii 17,, |,i 5 With
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which might be 50 to 100 s. and a ship length or two. This makes practical

on-line parameter estimation from noisy measurements very difficult in

restricted waters.

This report is presented in four principal parts. In Section 2, we

formulate the ship path control problem including a development of the linear

equations of motion, a discussion of measurement selection, and a development

of the design process disturbances which are used in the evaluation of system

performance using digital simulation. In Section 3, we present the develop-

ment and evaluation of the inner or control loop part of the path controller.

This presentation also includes the optimal state feedback controller and

Kalman filter gain calculation methods used in the gain update calculation

function of the outer loop in Fig. 1. This section includes a review of the

shaping filter approach for process disturbance modeling which we used in our

earlier work' and which cannot accommodate more long-term process disturbances

without a non-zero mean offset from the path. We then present an alternative

approach using a random-walk process disturbance model which can accommodate

the more long-term disturbances. This section closes with a demonstration of

the need for adaptation in a surface ship controller used in restricted

waters. Sections 4 and 5 present the development and evaluation of two

separate approaches for the parameter estimation function of the outer or gain

update loop. Section 4 presents a batch type, weighted-least-squares para-

meter estimation scheme using a moving window of ship motion data. This is a

statistical approach which makes no use of the probable measurement noise

levels. Section 5 presents a recursive type, minimum variance scheme. This

is a probabilistic approach which utilizes probabilistic estimates of the

measurement noise levels. The final section, Section 6, presents our con-

clusions based upon this work.
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2. Problem Formulation

In this section, we formulate the surface ship path control problem as

a linear, state-variable control problem. The selection of measurements and

typical process disturbances are also discussed.

2.1 Equations of Motion.

The development of the linearized, state-variable equations of motion

for a surface ship moving in the horizontal plane presented here is based on

the formulation by Fujino2 4 and is presented in more detail in our earlier

work.1  The coordinate system for the problem is shown in Fig. 2. The O-n r

system is fixed in space with the desired ship path along the E-axis. We

assume here that the desired path is a straight line. This simplification

does not alter the essential character of the control problem and is typical

in maneuvering situations where the ship is to follow a series of straight

path or leading line segments. The CG-xy system is fixed at the center of

gravity of the ship. The positive sense of the drift anqle 6, heading angle

', yaw rate r, and rudder angle 6 are shown. Neglecting the effects of pitch

and roll, the ship motion can be described by coordinates x, y, and .

uAB/ x,x, u
Su = dx/dt

v = dy/dt

U (u2+v)1/2
CG r = dWdt

6. 9

/ ; y,Y,v

Figure 2. Coordinate System for Path Control

The exact equations of motion of the ship are integro-differential equa-

tions in which convolution integrals represent the memory effect of the fluid

to previous motion.2 5 An alternative formulation yields differential equations

with frequency dependent coefficients. Fujino 26 has shown that for the maneuvers
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of interest here the frequency dependence is negligible and constant-coefficient

differential equations can be utilized. This assumption becomes less and less

valid as H/T+1. When the equations of motion are linearized about the nominal

path, the equation in the x-coordinate decouples so that the ship motion can

be given by,

s (re+my) = Yvv + (-mU+Yr)r + Y r + Y6+ Y (2)
dr

(Izz+Jz) -a- = Nv + Nrr + N v + N66 + N (3)

d _ a-) ,(4) :
dt ii

which are valid for small deviations from the equilibrium straight-line,

constant speed U condition. An external sway force Y and an external yawing

moment N are included to account for disturbances which act on the ship. It

is common and convenient to utilize drift angle 8 instead of the lateral

velocity v so we can use,

v = -UsinB -Ua , (5)

to express eq. (2) and (3) in terms of the drift angle. These equations can

then be nondimensionalized as shown in the Nomenclature to yield,

dip'dt=r 
(6)

-(i'+m * d' = Y + (-m'+Y ,)r' + Yr' + Y6,6' + Y' , (7)

dr'

zz zz d r 8= ' + Nr.r' + N,8' + N6,6' + N' (8)

d6'

d6' ( ( -10)dt' Tr c

where we have now included a first-order model for the steering gear dynamics.

The control is the commanded rudder angle 6 c* The unit of nondimensional

time t' is the time it takes the ship to travel one ship length.

Equations (6) through (10) can be transformed into state-variable form;
i.e.,
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0 1 0 00 ]1P 01 0

T0

r 0 f 2 2 f 2 3 0 f 2 5  r' 0 Y21 Y22

d 13 = 0 f32 f3 3 0 f3 5 '+ 0 + Y31, ()

1 0 -1 0 0 ' 0 0 0 j
_' L 0i 0j 0 I/_' I/T, L 0

or,

nxl mXl qxl
' Fs x' + Gs u + Fs w (12)

The coefficients of the open loop dynamics matrix f.. and the disturbance

distribution matrix Yij are algebraic combinations of the stability deriva-

tives and mass and inertia terms in eq. (7) and (8).' For this study, we

utilize data obtained by Fujino2 4'27 '28 for a model of the 290 m. tanker

Tokyo Maru. Fujino conducted planar motion mechanism (PMM) and oblique tow

tests of the model at various water depth-to-draft ratios H/T. Selected

characteristics for this vessel are shown in Table I. The coefficients fii

and Yij obtained for the Tokyo Maru at 12 knots full-scale at H/T values of

1.30, 1.50, 1.89, 2.50, and - are given in Table 2. As shown by Fujino2 4

this vessel is course unstable for the intermediate depth-to-draft ratios from

about 3.0 down to 1.75 as is typical of many larqe tankers.

Fujino's
characteristic moe prototypemodel

linear scale ratio, X 145.0 -

length between perpendiculars, m 2.000 290

breadth, m .3276 47.5

draft, m .1103 16.0

displacement 58.4 kg 179,100 LT

block coefficient 0.8054 0.8054

rudder area 3,390.0 mn2  71.29 m2

propeller diameter 53.8 mm 7.80 m

P/D 0.740 0.740

expanded area ratio 0.619 0.619

number of blades 5 5

Table 1. Characteristics of Tokyo Maru Model and Prototype.



H/T 1.30 1.50 1.89 2.50

f2 2  -1.6508 -1.7136 -1.7657 -1.8177 -1.9515

f23 9.3157 6.6235 5.7359 4.6112 3.1591
f2 5  -0.55543 -0.79235 -0.88074 -1.0416 -1.0410

Y2 1=f26  346.69 385.98 477.68 536.00 567.13
Y22=f27  4.8040 -2.2145 -5.0043 -5.8625 2.3365
f32  0.02974 0.13890 0.17199 0.23621 0.31507
f33  -1.0388 -0.71895 -0.52766 -0.54560 -0.63651
f3 5  -0.09995 -0.12092 -0.15607 -0.16639 -0.16163

31=f3 11.825 14.230 21.141 21.942 16.844
Y32=f-37 19.216 -23.123 -28.233 -31.490 -37.384

Table 2. Coefficients of Tokyo Maru versus H/T at Fn=0.116
(12 knots full-scale)

2.2 Measurement Selection.

All of the states in the ship path control problem as formulated in eq. (11)

are available for measurement. The heading ?' can be obtained from a

compass; the yaw rate r' can be obtained from a rate gyro; the drift angle

3'=-v' can be obtained from a doppler sonar; the rudder angle 6' can be obtained

from the rudder stock or less accurately from the steering gear rams. The

lateral offset from the desired path q' must be obtained using navigation aids

such as DECCA Hi-Fix or radar. Each of these measurements may be subject to

bias and zero-mean measurement errors and system transmission noise. In the

presence of this measurement "noise" and with the measurement of only selected

states, the complete state vector can be estimated using a Kalman filter
1 '2 9' 30

provided all of the states are observable with the chosen measurements.

The authors have previously studied the observability of the ship path

control problem.1 It was shown that it is necessary to measure the lateral

offset n'. Additional measurements improve the ability of a Kalman filter to

estimate all the states and thus improve the effectiveness of an optimal state

feedback controller. The yaw rate r' is the next most effective measurement.

The heading p' is readily available and is the next most effective measure-

ment. The drift angle 8' measurement was shown to add little to the effec-

tiveness of a ship path controller which already measures rl',r', and )'. With

the steering gear model used in Section 2.1, there is little need to measure

the rudder angle since the state is known exactly given any initial condition

6' (to ) and the subsequent rudder command history 6(t), t>t o . In any practi-

cal application, the steering gear would have its own, separate feedback

system; the first-order model included in eq. (11) is just a means of intro-
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ducing a realistic rudder time response into our study. For the purposes of

the inner or control loop design, it is reasonable to assume a measurement

vector consisting of measurements of q', r', and q' each contaminated by

Gaussian, white noise; i.e.,

pXl 1000
= i 1 0 0 x]? + [v2] HX (13)

1000 1 (13)

The concept of observability relates to the feasibility of estimating

the states of a system from a particular set of measurements. In an adaptive

system (or in off-line parameter estimation), a second objective is the

estimation of the parameters of the system from a pprticular set of measure-

ments and the system input history. Identifiability is the dual of observ-
0

ability in this context. Astr6m and Kdllstr6m'8 have studied the parameter

identifiability of the open-loop dynamics matrix parameters fij in the r

and the 8' equations in eq. (11). They showed that these parameters are

identifiable provided both p' and v' are measured. This conclusion requires

that the ship is controllable with the rudder which is known to be generally

true and which has been demonstrated theoretically by the authors. 1 In the

path control problem, i' and n' can provide the same identifiability as ('

and v' as can be seen from eq. (9). Reyardless, it is advisable to use all fea-

sible measurements in the parameter estimation so we assume that all states

are measured for use in the outer or gain update loop in Fig. 1. This gives,

nxl (14)
Z' = x + V'

This full measurement vector is also used in some of the inner or control

loop designs which are presented in the following sections.

The final part of measurement definition is to establish reasonable

levels for the measurement noise v and v'. The white noise power spectral

density needed in our continuous system design approach can be estimated by

assuming the noise to be exponentially correlated with an RMS noise level a.J

and a correlation time T.. The T. should be much faster than the time con-
J J

stants of the ship and less than the system sampling time for the white

noise model to be valid. The power spectral density can then be estimated

by,

-10-
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r.. V 2(o.)2T. (15)
)3 3

To evaluate the control system effectiveness in this study, we use digital

simulation with a fixed-stepsize Euler integration scheme. This has the

effect of approximating the continuous Gauss-Markov process, eq. (11) and

eq. (13), by a discrete Gauss-Markov process. In these simulations, the

covariance of the computer generated random measurement noise must be selected

to be consistent with the design noise power spectral density. To provide

equivalent state estimate error covariances, it is necessary that the simula-

tion measurement noise variance given by,

a 92 = r (16)
3 At

where At is the integration stepsize. 1' 3 1 This can also be considered from

a more direct viewpoint. If the controller is implemented digitally in an

onboard computer with the system sampled each At, the measurement noise will
,2

be a white sequence with variance oj

The reference measurement noise levels used in this work are shown in

Table 3. In view of our earlier comments about the rudder model included in

eq. (11), we assume exact knowledge of the rudder angle. Astrom and K9llstr6m18

note that all sensors have dynamics with time constants less than I sec. and

that the measurement errors are about 0.10 in , 0.02*/s in r and 0.01 m/s

in v. Millers 32 uses RMS errors of 0.20 in p, 0.01*/s in r and 10 m. in q.

Canner 33 states that DECCA Hi-Fix crosstrack errors are as low as lm. when

the baseline is along the desired path as is done at the entrance to Europoort.

Astr6m and K~llstr6mle and Bystr6m and KRllstrbm1 9 have found errors in r of

less than 0.002 O/s in systems identification of full-scale experiments. In

view of this data, the reference levels assumed in Table 3 seem reasonable.

The values for rij and o. are nondimensional. The oj- are calculated by

eq. (16) assuming At'=0.005 (At.24 s) which we use in our simulations.

A noise correlation time of 0.1 s. and a sampling time of .24 s. imply some

correlation butthe resulting values for (7j' yield reasonable covariances

for a white measurement noise sequence. Dimensionally, the u.' are about 93
3

percent of the assumed values for aj.
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measurement source . r.. a.'

'compass 0.10 0.1s 1.29810 -8  1.611x1 - 3

ro rate gyro 0.01 0/s 0.1s 2.860x10 -7  7.56310- 3

8'(v') doppler sonar 0.01 m/s 0.1s I.ll8xIO -1 1.459lO-

9' DECCA Hi-Fix 3m 0.1s 4.559xi0 - 7  9.549x1O -3

Table 3. Reference Measurement Noise Characteristics

2.3 Process Disturbances.
K-

While operating in restricted waters, a ship can be subjected to a

wide range of disturbances. Many of these can be characterized as being

short-term relative to the time constants of the ship and as having essentially

a zero mean value. First-order wave forces, wind gusts, bottom ripples as

observed outside Europoort, 34 and passing ships can be included in this

category. Other disturbances remain long enough relative to the time constants

of the ship that they must be considered to have non-zero mean value. Second-

order wave forces and the effect of a lateral current, bank, or steady wind

are included in this category. For the purposes of this study, we define a

number of typical or design process disturbances which are used in simulations

to evaluate the performance of the various path controllers. These design

disturbances are defined briefly here.

Passing Ship. The lateral force Y' and yawing moment N' due to a

passing ship was selected as a typical short-term, essentially zero-mean dis-

turbance. The assumed design disturbance is shown in Fig. 3. This disturbance

is based on results originally presented by Newton 35 for two Mariner vessels

passing in deep water. These results are considered to be representative

forces and moment histories and thus are reasonable for use in comparisons

here. Yung 36 and Abkowitz, Ashe, and Fortson 37 show that the magnitude of

the disturbances increase in shallow water as H/T-*] so the magnitudes in Fig. 3

are known to be low at the shallower depths. In Fig. 3, the nondimensional

time scale is in ship lengths and the ships are beam-to-beam at t'=0. These

lateral force and yawing moment histories are assumed to be independent of

depth under keel in our simulations.

-12-
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Figure 3. Design Passing Ship Disturbance.

Lateral Current. The effect of a lateral current was selected as a

typical long-term, nonzero-mean disturbance for use in our ship path controller

simulations. In a steady current, the ship assumes an equilibrium condition

with 6'=0 and ('=B' so that the effective drift angle relative to the water

Be' is zero. In this condition, there is no external hydrodynamic lateral

force or yawing moment on the ship. In our ship maneuvering equations, we

have assumed to this point that the drift angle B' is with respect to the

earth. In shallow water, a doppler sonar would actually measure lateral

velocity relative to the bottom. In a lateral current vc ' without an additional

disturbance, eq. (7), (8), and (9) should properly be written,

_( l m l dBe,d'' ye' + (-m'+Yr,)r' + Y;,r' + Y6' (17)

dr' 6(W__ ' = NOBe' + N ,r' + N B ' + N6 1 (18)
Zz zz) dt' Be r B '(8

dn--,dt' Be  + v c  (19)

-13-
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Now if the drift angle relative to the oarth Ji' is introduced,

= ' + v,' , (20)

eq. (17), (18), and (19) become as follows in a steady current:

- ( 't+in -) = Y (3' + (-m'+Y r )r' + Yr,r' + Y + Y v+ N 121

(I+')d N I N 'N3,N '+ i

dz= + N ,r' + ,, + N6' + N,, (22)
(Iz )4zz rt' '= N V'8 r N c

d_' _, ,0-F (2 3)dr'- -

Thus when using the drift angle with respect to the earth in eq. (11), a

steady current has the effect of applying an external literal force and

yawing moment given by,

Y' = Y 'v c '  (24)

and,

Nt = N, r vc e.l

For design evaluation purpo!;es, w, hive used eq. (24) and (25) to

establish the lateral force and yawinq moment produced by a I knot lateral

current on the Tokyo Maru movinki at L' knot!-, in an int ermediate water depth

H/'T=l .89. This disturbance wa; a!;ssumed to be constant for 15 ship lengths

and then to reduce linea-ly to one hal f this value at 20 ship lenqths. 'lhi a

dlesign disturbance is shown in Fiq. 4. These lateral force and yawing moment

histories ar, assumed to be independent of depth under keel in our simulation!.

1.0 -Y./Yo' .

N/N , . Y,' = .0023277

No t = .0010262

5 10 15 20 25 30

Figure 4. Desiqn Iateral Current Disturbance
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ABC Harbor Entrance. As a final design evaluation disturbance we

selected an approximation to the lateral current disturbance experienced at

the entrance to Europoort (Rotterdam). This lateral current was included

in the ABC harbor definition recommended by the SNAMF H-10 Controllability

panel for use in ship controllability studies. 38 This proves to be a very

demanding test for a path controller. There is about a 1 knot lateral current

outside the entrance which increases up to about 2 knots at about 0.4 km

from the harbor entrance. The lateral current then reduces to zero at the

harbor entrance. In this situation, the lateral current produces two types

of forces and moments on the ship in addition to those resulting from the

use of the drift angle with respect to the earth in eq. (11). First, the

changing current will cause the ship to accelerate with respect to the earth

so additional inertial forces and moments will appear in eq. (7) and (8).

Second, the spatial current change over the length of the ship will produce a

changing lateral force along the hull which can be integrated stripwise

similar to the approach used by Newman3 9 to yield a total lateral force and

yawing moment on the ship.

All of the effects of the steady and changing lateral current at the

entrance to the ABC harbor can be moved to the right side of eq. (7) and (8)

and combined as net lateral force and yawing moment terms. With 6' assumed

to be with respect to the earth, this net result is a disturbance history

similar to that shown in Fig. 5. This disturbance history is based on

similar results presented by van Oortmerssen4C and has been verified by the

authors using a simplified strip theory approach. In Fig. 5, the ship's bow

reaches the harbor entrance (vc'=0) at t'=ll.0; the stern thus reaches the

entrance at t'=12.0. The steady values for t':6 in Fig. 5 have approximately

the same magnitude (R knot lateral current) as those in Fig. 4 for t<l5.

-15-
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Figure 5. Lateral Current Disturbance at ABC Hairbor Entrance



3. Control Loop Design

In this section, we discuss the design of the inner or control loop in

Fig. 1. This naturally includes the methods used for the calculation of

controller gains C and the Kalman filter gains K performed in the outer or

gain update loop. This section involves an extension of our earlier work'

and some of the introductory discussion included there and elsewhore
2q', 0 ,41

will not be repeated here. We begin with a discussion of the optimal, steady-

state controller design and then proceed with development of the Kalman filter

which generates the state estimate used by the controller. The section

closes with a look at the need and requirements for an adaptive feature in a

path controller used in restricted waters.

3.1 Optimal, Steady-State Controller Design.

The control problem is to keep the ship along the desired track using

acceptable levels of rudder in the presence of disturbances while using noisy

measurements. The ship model is given by eq. (12) where in this subsection

we will assume the disturbance vector w consists of a Gaussian white noise

lateral force and yawing moment. Equation (12) describes a Gauss-Markov

process in which the state of the ship is completely described by its mean

value state vector x which follows eq. (12) with w=O and by its covariance

matrix X where,

R(t) = Ejx(t)' , (26)

TX(t) =  E[(x(t) - (t))(x(t) - (t T ] ,(27)

and E[...] is the expected value or ensemble average over the many possible

observations at time t. We will assume that the white noise disturbance has

zero mean and covariance given by,

ETw(t)w( ) = Q(t)6(t-T) , (28)

where Q is the power spectral density matrix and 6(t-T) is the Dirac delta

function. We also assume there is no correlation between the initial condition

of the system x(to) and the disturbances w.

An optimal control design problem can be stated as establishing the

linear state feedback control law,

u= Cx , (29)
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which minimizes the linear quadrati( ot tWt it,

tf

S (xT Ax + u TBu) dt

to

where A and B are weighting matrices at the I sl,4nr's dl,;posa1. In till,

problem, we wish to minimize n' while using acceptable levels ot rudder '

and 6 c  We can therefore assume all terms in the A matrix to be zero

except the a weighting on n'2 and the a5 weighting on A'2 and assume a

nonzero B=b weighting of 6c'2 To yield a reasonable weightinq among these

terms and to accomplish the needed scaling of terms in oq. (30) we as,;lme,

a 4 4  = (o) 2  : 772.4f,3 , ( 1)

a5 5  = ( )-2 = 131.332 , (32)

= (6co'f)2= 131.332 , (33)

based on a dimensional no -10.43 m. (slightly less than one-quarter beam) and

a dimensional 6
0=

6co=5* . This indicates that we are willing to commit

approximately 50 rudder to path control when the !-hip deviates ro from the

desired path.

The Separation Theorem 2 9 states that the optimal control desired here

is obtained by assuming exact knowledle f the state for use in eq. (29)

and by neglectinq the disturbance w in eq. (12). When the matrices ;s, ,

A, and B are constant, the control which minimizes eq. (30) is given by,

C = -B-IGsTS , (34)

where S is the steady-state (;=O) solution of the matrix Riccati equation,

= SFs - FsTS + SGBIGTS -A (')

An efficient way to obtain S is by Potter's alqorithm which utilizw,; the-

technique of eigenvector decomposition to obtain a clo:;ed-form solution for

S . MacFarlane4 2 and Potter43 first proposed this solution technique. It

was developed into a practical design tool by Bryson and Hall' who utilized

the QR algorithm to obtain the eiqensystem in their OPTSYS computer program.

Potter 4 3 proved that S can be expressed in terms of the eigenvectors of the

2nx2n partitioned matrix,

- iA-



I .. . . .3 6 )-A: -Fs J i

which can be shown to be the coefficient matrix of the 2n Eulet-Lagrangc

equations for minimizing eq. (30) subject to eq. (12). The eigenvalues of

M are in pairs which are symmetric about the imaginary axis in the complex

plane. If the eigenvectors associated with the eigenvalues with positive

real parts are designated with the subscript + and those associated with the

eigenvalues with negative real parts are designated with the subscript -

the eigenvectors can be arranged as follows: V

A+ A/j

The steady-state solution of eq. (35) is then given by,

s. = A(x-)-  (38)

Equations (34) and (38) are used to calculate the controller qain matrices

in this work. The QR algorithm is used to obtain the eigensystem of M as

defined by eq. (36).

3.2 First-order Shaping Filter Approach.

In Section 3.1, we assumed that the disturbance vector w in eq. (12)

was composed of Gaussian white noise. In our earlier work', we developed

path controllers capable of handling short-term, essentially zero-mean

disturbances such as the passing ship disturbance shown in Fig. 3. This

disturbance acts in a correlated manner over about three ship lengths so the

assumption of Gaussian white noise di:.turbancesis poor for this problem. The

usual approach when a disturbance is correlated with characteristic times

comparable to those of the system under consideration is to model the distur-

bance as the output of a shaping filter which is driven by Gaussian white

noise. The passing ship disturbance in Fiq. 3 can be reasonably modeled as

exponentially correlated processes with zero means. These can be produced by

first-order shaping filters. We therefore introduced the external yawinq

moment N' and the external lateral force Y' as additional states defined by:

dN'
TN dT- N + w (39)

P, -1')-
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and,

T -Y' + w (40)
Y dt' 2

where correlation times TN=TY-l ship length are reasonable assumptions based

on Fig. 3. These shaping filter equations are driven by Gaussian white

noise w=-(wl,W 2 )T which has power spectral density Q. This model is equally

valid for the disturbance produced as the ship passes localized fixed objects

and other short-term disturbances.

To incorporate the disturbance model eq. (39) and (40) into the controller

design, the state vector x is augmented by the addition of states N' and Y'

to yield an augmented state vector x'. Equation (II) then becomes,

01 00 0 0 0 0 0

r O f 22f O30f 25 f 26 f 27 r 0 0 0

32 33 35 36 37 0

1N' 0 -1 0 0 0 ' 0 0dt -/T
r r 2]

L L00 0 0 -I/TN 0 N' 0 I/T 0

(41)

or,
n'×1

= Fe x' + Ge u + Fe w (42)

The upper righ.t (5x2) partition of Fe in eq. (41) is 1's in eq. (I1); i.e.,

f 26=21' etc. The measurement eq. (13) now becomes,

z =H x' +V , (43)

where He is just Hs in eq. (13) with a (3x2) block of zeros added at the

right. The optimal control law is now qiven by,

u = Cx' , (44)

where the control gain matrix is obtained as described above except the A

matrix must be extended to (7x7) with additional rows and columns of zeros

for use with x' in lieu of x in eq. 30 and F. and G. must be used in eq. (34),

(35), anti (36) in lieu of Fs and Gs . The optimal control qains are then

qiven by,
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C = -B GeTS (45)

Having only the noisy measurements of three states included in z, the

state vector x' needed in eq. (44) is not directly available. The Separation

Theorem states that it is optimal to use the control gains produced by eq. (45)

with a maximum likelihood estimate of the augmented state vector x' produced

by an optimal stochastic state estimator or Kalman-Bucy filter. The control

law then becomes,

uCx' , (46)

where the state estimate is produced by the Kalman-Bucy filter given by,

Fe ' + Ge u + K(z-He &') (47)

When the system is stationary; i.e., a statistical steady-state with Fe, Ge,

re , Q, and R constant, the steady-state filter gain matrix K is given by,

K = P.HeTR-1 , (48)

where P is the steady-state (P=O) solution of the matrix Riccati equation,

=FeP + PFe T + reQFe T - PHeTR-IRep  ,(49)

and Q is the power spectral density of the white noise process disturbance w

in eq. (42) and R is the power spectral density of the white measurement

noise v in eq. (43).

An efficient way to obtain P is again by Potter's algorithm which

utilizes eigenvector decomposition. In this case, P_ can be expressed in

terms of the eigenvectors of the 2n'x2n' partitioned matrix,

F. e -reQ eT]
M T T (50)

_HeTR1He eT

If the eigenvectors associated with the eigenvalues of M' with positive real

parts are designated with the subscript + and those associated with the

eigenvalues with negative real parts are designated with the subscript -

the eigenvectors can be arranged as follows:

X' =  -(51)

LA
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The steady-state solution of eq. (49) is then given by,

= - (52)

Equations (48) and (52) are used to calculate the Kalman filter gain matrices

in this work. The QR algorithm is used to obtain the eigensystem of M' as

defined by eq. (50).

At this point, we will present typical results for a path controller

designed using the first-order shaping filter disturbance models eq. (39)

and (40). These results illustrate the effectiveness and the limitations

of this type of design. The authors have previously shown I that if a non-

adaptive path controller is designed assuming constant ship characteristics,

the best overall performance is achieved with a controller designed for the

least course stable ship characteristics. For the Tokyo Maru this condition

is at about H/T=l-1.89 so the characteristics for this depth-to-draft ratio in

Table 2 are used in this example. The measurement noise power spectral

density R is taken from Table 3 assuming measurements of ', r', and q' in

eq. (43). The nonzero terms in the controller cost function weighting

matrices are defined by eq. (31), (32), and (33). The remaining definition

needed is the process disturbance power spectral density Q. Using the

passing ship disturbance in Fig. 3 as the design disturbance, the RMS

values of N' and Y' between t'=-2 and t'=l.4 are ON=8.798xl0-5 and

j y =21.178xl0- 5 , respectively. Assuming correlation times TN=Ty=l as noted

above, the nonzero terms in the power spectral density matrix can be taken

as,

q = 2TNON 2 = 1.548xi0-8  ' (53)

and,

q22 = 2Tyay 2 = 8.970xl0-8  (54)

The control loop was designed for the Tokyo Maru with the above

assumptions using the Michigan Terminal System (MTS) version of Bryson and

Hall's OPTSYS program. 3 1'44 The resulting controller gains and Kalman-

Bucy filter gains are shown in Table 4. These results are different from

those reported earlier by the authors' due to the use of a corrected Froude

number of 0.116, the use of a zero weighting all on ,2 in eq. (10), and
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the use of lower assumed measurement noise levels. The zero row in the K

matrix results because with our steering gear model the control history

produces exact knowledge of the rudder angle. Therefore, the measurements

provide no additional information. All the nonzero gains in Table 4 must

vary with water depth if they are to remain optimal except c14 =2.4252 which

the authors have shown to be vessel, speed, and water depth independent.

controller gains CT Kalman-Bucy filter gains K

5.5421 4.6335 0.8400 -0.0021

2.6601 18.5075 12.2263 -0.3278

6.3895 3.3586 2.6208 -4.2929

2.4252 -0.0753 -0.5225 2.9000

-0.8499 0.0000 0.0000 0.U000

679.68 0.1164 0.1850 0.0440

-52.776 -0.0982 -0.1604 0.1654

Table 4. Optimal Gains for Tokyo Maru at H/T=1.89 and Fn=0.116-
First-Order Shaping Filter Disturbance Model

To illustrate the effectiveness of the design given in Table 4, we

simulated the Tokyo Maru under the control of this controller using the

SHIPSIM/OPTSIM computer program.3 1 Figures 6 and 7 show the results of a

simulation which begins with the ship one half beam (B/2=23.75 m.) off tile

desired track with all other states zero. The filter is assumed to have been

operating for some time and is given exact knowledge of the state x=x at

t'=0. In this simulation, the ship also passes another ship beam-to-beam at

t'=20. The magnitude of this passing ship disturbance is arbitrarily taken

as four times that shown in Fig. 3. Figure 6 shows the resulting lateral

offset response. The maximum overshoot at t'=5.3 is 1.6 m.; the maximum

deviation due to the passing ship is 6.2 m. Figure 7 shows the corrrepondinq

rudder angle response. The controller provides effective control und -r

these conditions. It provides effective control when the ship is subjected

to the short-term, essentially zero mean disturbances for which the controller

was designed.

The weakness of the ship path controller designed using first-order

shaping filters, as defined above, to model the process disturbances is that

the controller cannot accommodate more long-term disturbances without a non-

zero offset from the desired path. Normal state-variable feedback controller:;,
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as this approach produces, yield a proportional plus derivative (P-D) type control

law. To produce zero steady-state errors with a constant disturbance some type

of integral action is needed; i.e. a (P-I-D) type control law is needed. To

show the performance of the controller given in Table 4 with constant distur-

bances, the Tokyo Maru was simulated under control of this controller while

being subjected to the design lateral current disturbance shown in Fig. 4. The

initial condition is x~x=0 in this simulation. The lateral offset response is

shown in Fig. 8. Steady offsets of about 54 m. and 27 m. occur during the two

periods of constant disturbance. A 1 knot lateral current produces a steady

offset of over one ship beam. The corresponding rudder angle response is snown

in Fig. 9. The yawing moment estimate N' produced by the Kalman-Bucy filter is

shown in Fig. 10. The filter prpduces approximately constant but biased estimates

of N' and Y' during the periods of constant disturbance. The statei estimates

have much smaller or no apparent bias errors. Comparing Fig. 10 with Fig. 4, the

filter estimates the 0.00103 yawing moment during the first 15 ship lengths to

be about 0.00072. The equilibrium rudder angles in Fig. 9 are zero and the

equilibrium heading and drift angles are equal. Thus, from eq. (46) it can be

seen that a steady offset r' develops to "counteract" the steady errors in the

disturbance estimates N' and Y'.

I I I I l R

Figure 8. Lateral Offset Response to Desiqn Lateral Current-
First-Order Shaping Filtor Disturbance Model Design
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3.3 Random Walk Approach.

As noted in the previous section, some type of integral control action is

needed to produce a zero offset of the ship from the desired path with a con-

stant disturbance. Attention has been directed recently toward the develop-

ment of stochastic state variable controllers with integral control properties

when using only incomplete, noisy state measurements. Among this work is that

of Holley and Bryson4 5 in which they applied a number of approaches to the

control of an aircraft landing in a crosswind. Alternative approaches which

are similar to that which we present here have been presented by Kwatny4 6

and by Balchen, et al.4
7

A reasonable first attempt at the treatment of a constant disturbance

might be to model the disturbance as a random bias; i.e.,

IN' , N' (0) = No , (55)dt'

where NO' is an unknown, random quantity. In this problem, models of this

type could be assumed for N' and Y' and the state vector could be augmented to

become x'=[xTN',Y']T as done above with the first-order shaping filters.

Holley and Bryson4 5 have shown, however, that the steady-state Kalman filter,

as used here, does not exist for this problem. This results because a time-

varying Kalman filter would yield statistically exact estimates of the random

biases so that in the steady-state the measurements will contain no additional

information on these disturbances.

A number of successful approaches do, however, exist for this control

problem. First, it is feasible to model the disturbances as first-order shaping

filters as in the previous section but with the assumption that the correlation

times are very long compared with the dynamics of the ship. Disturbance models

eq. (39) and (40) would be used with the assumption that TN and Ty are perhaps

100 ship lengths. It would be necessary to assume RMS values of the distur-

bances ON and cy for use in eq. (53) and (54) and the design could then proceed

as in the previous section. This approach would continue to produce biased

estimates of constant disturbances but these estimates approach the correct

values as the correlation times are increased. 4 5 Note that in this approach

it is necessary to make assumptions of both the correlation times and the

RMS disturbance values.
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A second approach was presented recently by Holley and Bryson.4 5 They

develop a state variable generalization of integral control in which a Kalman

filter is used to estimate the state vector x ignorinq the disturbances and

then an integral of the output deviations is added separately to the control

law. They note that this approach produc,, a deqraded trainsient res;ponsc

compared with the use of first-order shaping filters with lonq correlation

times but that the controller is less sensitive to modeling errors. The

aut,,ors will be undertaking an investiqation of this type of controller for

ship path control during the coming year and these results will be reported

separately later.

A third approach to the development of a state variable controller with

integral control properties is to model the constant or nearly constant dis-

turbances as a random walk. More precisely this model is an independent-

increment, continuous process and should therefore be called a Wiener-L6vy

process or Brownian motion. In this approach the disturbances are assumed to

be the integral of white noise; i.e., for this problem,

dt = WN ' 
(56)

and

-Y w (57)
dt' Y

Note that now it is only nes:;a y to , stimat K the j.owe sj,'ctral density Q

of the disturbance white noi ;, ,.,=[wN,WylT. Kwatsy" ' has used this modeling

approach to develop state variable controll,,rs with inteqail control properties.

Balchen, et a] 4 7 have. used a more general "',nvironarint i!turbanco model,

w = Ew+n , (8)

where n is white noise. They then conf ider the random wAlk mode l as a special

case of this approach; i.e. E=O. We have chosen to investigate the effective-

ness of this disturbance mod ,Iirn approach in this work.

Using eq. (56) and (57), the stat, vector x can I)- augmented with N'

and Y' so that eq. (11) now becomesn.,



" 1 0 0 0 0 0 0 ' 0 0 o l
r 0 f2 f2 3 0 f2 5  f2 6 f27  r' 0 00

o 0 f23 f33 0 f35  f36 f37  0 0

d ' =1 0 -1 0 0 0 0 rl' + 0 6+ 0 0(59

6' 0 0 0 0 i/Tr 0 0 6' l/Tr 0 0

N' 0 0 0 00 - 0 N' 0 1 0

Y, 0 0 0 0 0 0 -C Y' 0 01

or,

FeX + Geu + reW (60)

In this formulation, c is a small quantity introduced so that Potter's algorithm

can be used to design the steady-state controller and the steady-state filter

which estimates x'. With £=0, matrix M defined by eq. (36) with Fe and Ge used

in lieu of Fs and G., respectively, has four zero eigenvalues; matrix M' 4
defined by eq. (50) has two zero eigenvalues. MacFarlane4 2 has shown that

under these conditions general solutions for S and P in terms of the eigen-

vectors of M and M', respectively, do not exist. As c0, however, the steady-

state controller gain matrix C and the steady-state filter gain matrix K

approach limits. As an example, in the design presented in detail below the

gain C16 =995.32 when E=10
- 2, 998.50 when c=10 -4 , and 998.54 when c=10 - 6 . We

have, therefore, used c=10 - 4 here. It is not necessary to include c#0 in

the implementation of the filter once the gains have been obtained.

The remaining definition nor-iccI to specify the control loop desiqn is the

white noise w power spectral density matrix Q. General results for Brownian

motion can be used to obtain a direct, physical way to establish Q. If we

have a continuous, Brownian motion process y(t), it has a zero mean and the

following properties,48

E[y(t)2 ] = O2 t , (61)

where 02 is the diffusion coefficient or variance parameter and,

E [ (Y (t2)-Y (tl)) ] (t 2-t ) 1 (62)

provided t2 >tl. The formal derivative of the Brownian motion is white noio

where the noise spectral density is given by,

C1 0,-2)



Now if a white noise process is approximated by an equivalent white noise

sequence with time step At, Jazwinski 4 8 shows that it must have a covariance

q which is related to the process spectra] density q by,

q
q At (64)

in order to provide a constant noise "power" level; i.e., constant area under

the autocorrelation curve. If At is taken as t 2-t Ieqs(62),(63),and (64) yield,

q = E[ ( 2 (65)

Further, if At is viewed as the integration stepsize used in the Euler

integration discretization of the continuous process we can use eq. (64) and

(65) to approximate the white noise power spectral density as,

q = At S2 , (66)

where S is the maximum expected rate of change or slope of the continuous

process being modeled by the Brownian motion.

For the design presented here, eq. (66) was used to establish the distur-

bance model power spectral densities. Assuming that the yawing moment and

lateral force disturbances could change by approximately twice the values

produced by a steady one knot lateral current in one ,ship length we have

S,=0.002 and Sy=0.005. With our At=0.005, eq. (or) then yields,

= AtS N = 2.000,10- (67)qll N

and,

q22 = 125 xl0× -7 (6b)

The measurement noise power spectral den:;ity and remainiigt ussumptions are

the same as in the previous section. With th,;te as:limjt iOni;, the control

loop was designel for the Tokyo Maru usinq the OPTSY.' proqram. The les!ultill

controller qains and Kalman-Bucy filter gains are shown in Table 5. These

results can be compared with thost shown in Table 4 for the desiqn using the

first-order shaping filter disturbance models. The state feedback gains

C11 throaiqh C15 are the same in both approaches.

.9 U
JJ .



controller gains CT Kalman-Bucy filter gains K

5.5421 4.6600 0.8798 -0.0019

2.6601 19.3843 14.1945 -0.3561

6.3895 3.7193 3.4862 -8.1031

2.4252 -0.0651 -0.5677 4.0000

-0.8499 0.0000 0.0000 0.0000

998.50 0.1358 0.2366 0.0907

-12.571 -0.1551 -0.2844 0.4719

Table 5. Optimal Gains for Tokyo Maru at H/T=].89 and Fn=0.11 6 
-

Random Walk Disturbance Model

To illustrate the effectiveness of the design given in Table 5, we

simulated the Tokyo Maru under the control of this controller using a one-

half beam initial offset with all other states zero and x(0)=x(O). This

simulation also includes a ship passing at t'=20 producing a disturbance

four times that shown in Fig. 3. Figure 11 shows the resulting lateral offset

response and is directly comparable with Fig. 6. The overshoot at t'=5.6

is 1.7 m.; the maximum deviation due to the passing ship is 3.5 m. Figure

12 shows the corresponding rudder angle response and is directly comparable

with Fig. 7. The controller provides control comparable to that provided by

the first-order shaping filter design shown in Fig. 6 and 7. The maximum

rudder angle in Fig. 12 of 350 shows that the assumed disturbance of four

times the values shown in Fig. 3 actually violates the validity of the linear

model. To illustrate the integral control properties of this design, we

simulated the Tokyo Maru under the control of this controller while being

subjected to the design lateral current disturbance shown in Fig. 4. The

initial condition is x=i=0 in this simulation. The lateral offset response

is shown in Fig. 13 which is directly comparable with Fig. 8. The maximum

lateral offset during the startup of the system is 34.5 m.; the controller

tl "n returns the ship to the desired track in the presence of the con!;tant -rn

knOL lateral current. The maximum offset during the ramp current chan ge i!;

about 9 m. The corresponding rudder angle response is shown in Fig. 14; the

Kalman filter estimate of the yawing moment disturbance N' is shown in Fiq. 15.

Comparing Fig. 10 with Fig. 4, the filter produces essentially exact estimatec,

of the constant disturbance levels of 0.00103 and 0.000515. As desij),,, th!

desiqn Fro/ides effective control in the prosenco ot con;tant externil ,tir -

bar-es without a steady offset from th, desired path.

- tl -
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3.4 Necessity for an Adaptive Design.

In the previous section we showed that the path controller desiqneAi usirik

random walk disturbance models provided effective control with essentially

zero mean disturbances as shown in Figure 11 and with the design latoral

current disturbance as shown in Fig. 13. In these examples, the control[Ler

was designed for the ship characteristics at its least course stable depth-to-

draft ratio, H/T=-l.89, and then the ship was simulated to operate at this same

depth-to-draft ratio. The characteristics of the ship are, however, known to

change considerably with water depth as shown in Table 2. They will also

change with ship operating condition such as draft and trim. We have

previously shown that if a constant gain design is to be used, the best over-

all performance is achieved by using the design developed for the ship's least

course stable depth-to-draft ratio.1 With this design approach, the question

remains as to how much performance is lost by not adjusting the gains to be

optimal at each ship operating condition. Notice also that the model of the

ship (Fe) included in the Kalman filter implementation in accordance with

eq. (47) should be updated to reflect the ship characteristics in each

operating condition if these are known. An adaptive path controller is one

which can detect the existing ship characteristics and automatically adjust

the controller and filter gains and the Kalmas filter model of the ship

accordingly.

To illustrate the effect of an "incorrect" water depth, we simulated the

Tokyo Maru under the control of the controller defined in Table 5 while being

subjected to the design lateral current disturbance shown in Fig. 4 in deep

water (H/T=-). The resulting lateral offset response is shown in Fig. Is as

the solid line. This response is comparable with that 55)>WT1 in Fig. 1i for the

same disturbance in the "design" water depth H/T=1.89. Also shown in Fig. 18

as the dashed line is the response which would result if the controller had

been redesigned (or adapted) to be optimal at H/T - in lieu of H/T=I.80. The

loss in performance due to the use of a nonadaptive, con ;tant-gain and constant

filter ship model design can be seen by comparing the two responses in Fiq. 18.

The maximum lateral offset during the startup of ti,, :y:;tm increast-!; from

50.2 m. to 63.5 m.; the maximum offset during the ramp chai,; in I disturbanue

level increases from 13.8 m. to 18.5 m. While the transicint rYsIponse is

degraded, the cuntroller doe; retain the desired integ ,al "-ont iol prop 'tty and1

returns the ship to the desired path in the presenc(- c) a constant. distuilsince.
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The rudder angle response corresponding to Fig. 18 is shown in Fig. 19; the

yawing moment estimate N' is shown in Fiq. 20. Comparinq Fig. 20 with Fig.

4, the filter produces incorrect estimates of the constant disturbances. The

effect of using nonoptimal filter qains and incorrect characteristics in the

Kalman filter ship model F. is to produce an equilibrium, mean yawing moment

estimate of about 0.00199 during the first 15 ship lengths in lieu of the

0.00103 shown in Fig. 4. This bias error in the yawing moment estimate and a

similar error in the lateral force estimate degrade the transient performance

but the controller has the very desirable property of producing the same

equilibrium, mean state as would the optimal controller. For example, both

the H/T=l-.89 design and the optimal H/T= - design yield,

5fl V-O. 1428
r' 0.0000

-0.1428

x (t=") = f' = 0.0000 (69)

0.1310

N. .001992

0oo3437i

++
I t44

4- _ 4 -. 4 1

TIMF

2VO.M 20 ML,[3SIG2.0 F30 /7-1.89 00
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Figure 18. Lateral Offset Response to Desiqn Lateral Current -

Designs for H/T=I.R9 and H/Th" Operatinq at HiT = -.



---- - t - 7 -i

Tctl

LU 4A 9* 12.0 %X* 21XD 24A 26* 2M 36*

FOCOh WAK MOUfL.OESIGEl (CE RU-I89NS BEP.iSIO CUBBEN

Figure 1i. Rawing Mome esimate wt Design Latral Current-

Design for H/T--l .89 Operat ing at !iI/'>',

-T-TT



when the ship is subjected to the yawing moment and lateral force shown ill

Fig. 4 for t'<15 while in deep water (11/T -). The equilibrium rudder angle is

nonzero here because the "design" disturbance in Fig. 4 is not exactly equiva-

lent to a lateral current when applied to the ship in any water depth other

than the H/T=l.89 for which it was derived.

For a path controller to remain optimal it each operating condition, the

controller gains C, the Kalman-Bucy filter gains K, and the ship model Fe used

in the filter eq. (47) must be adjusted. The change of the ship characteris-

tics Fs or Fe with water depth is shown in Table 2. To illustrate the effect

of water depth on the gains, Table 6 shows the optimal gains for the Toktlo

Maru at H/T- -. These gains produce the lateral offset response shown by the

dashed line in Fig. 18. The gains in Table 6 for H/T=- can be compared with

those in Table 5 for H/T=1.89. The controller feedback gains on ' and Y'

show the greatest variations.

controller gains CT  Kalman-Bucy filter gains K

5.8752 4.6624 0.8842 O.O)l

2.4635 19.4819 15.1516 -0.2571

1.9204 3.5844 2.8169 -10.9043

2.4252 0.0034 -0.4099 4.6587

-0.7955 0.0000 0.o000 0.0000

1126.44 0.1394 0.2548 0. 050)

82.614 -0.0878 -0.1596 0.5079

Table 6. Optimal Gains for Tokiyo Maru at l/T=- and Fn=0.116 -

Random Walk Disturbance Model

In Table 2, it can be seen that ten parameters in the linear state

variable equations of motion of the ship eq. (11) vary with water depth.

These same parameters will also vary with draft, trim, etc. In considering

the use of an adaptive control system it is useful to establish how important

the variation in each of these parameters is to the response of the system.

If the variation of a parameter ha:; little influence on or correlation with

the response, it will be difficult to establish that parameter from the

response. Fortunately, if a parameter has little influence on the response

it may not be necessary to estimate the parameter accurately or it may not be

necessary to adapt for the changes in thalt parameter at all . In our previous

work,1 we studied the sensitivity of the ship path control response to the ton



parameters which vary with depth. This study was for siomewhat ,litleoronit path

controller designs for the Tokyo Maru utilizinq first-order shapinq filter

disturbance models. These results are still useful, however, in this context

and are summarized in Table 7. In this computer experiment, a number of

controllers were desiqned and then their root mean square (RMS) responses to

the design disturbance ani noise levels were established using the OPTSYS

computer program. These results were then combined into a single RMS cost

J which is proportional to the cost function used in tht. optimal control

system design; i.e.,

3 =- ,2 + 5.8818 -,'I' + 2 , (70)

where (.-) signifies the RMS vaiue of each quantity. This RMS cost provides

an appropriate single measurement of the effectiveneS:; of each controller.

case cost J

1 all parameters adapted; optimal at H/T.. 0.00681

2 all parameters adapted except y31' 2,or f 0.)00681

. all parameters adapted except f2 ,, or v 0.00682

4. all pArameters adapted _xept f 0.3kj6ti

5. all parameter.s adapted except 7 21 0

6 all param,. ter.F; adapteoi excep t f J . 0(0) 3

all parametrs adapted except f. ) . 0 /46

-i. no paramet.rs adapted; optim l t,)r 11/t -I W.') 0. 0t) 7H

9. only parameters f23' f 'Iandi T. I ,*1 pt r; i o. oc6,

all n aapt,1 R rlmt, .s f('1 H/T I...q

Tab le 7. RMWO Cost J for Toktjo latir witi Variou! c' it il lers at I/T-

First-Order Shapinq FlI Io Di sturbari-, Modell

Shown in line:; 1 and P ,f Table a ir(, th, RMtO ,fst f .1 for the cont rol lbrs

designed to be op timal at IT.. ard H/P 1 .-,0, r.;pete- iv,,ly, when hoth at

operated at H/T=-. The RMS c,)st can be SenI to det radc trom the op timal

0.00681 to ).00781 (+1'-)1) if a nonadaptive dsign were used in dep water

with the design developed for the ship's leas t-course-;t.ible depth of H/T=1.89.

To show the importance of each individual paramezter we also designed a series

of controllers using all characteristics for H/T = , exce(.pt a ;ll parameter

which wa:, set at its value for If/T=1. 89. Tb i 5 prolices tie res)oru;t (if a

controller which could adapt for all i.ktmterS except th0 one, held at lt s

-,4, -



H/T=1.89 value and shows the sensitivity of the response to that parameter.

In lines 2 through 7 of Table 7, it can be seen that only f2 3 ' f25 ' and y21

have a significant effect on the RMS response. Coefficient f23 of ' in the

r' equation is by far the most significant parameter. In line 9 of Table 7

we show the RMS cost produced by a design which would adapt only for changes

in f23' f25' and y21 while keeping the remaining seven parameters fixed at

their value at H/T=l.89. This RMS cost is within 0.3% of that achieved with

the optimal design shown in line 1. These results are very significant and

show that it is not essential that the adaptive path control systems to be

studied in the following chapters adapt for all ten of the parameters which

vary with water depth, draft, trim, etc.

To further investigate the point made in the previous paragraph, we

designed a "partially-adapted" controller using all the assumptions of Section

3.3 except that the parameters f2 3 and f2 5 were taken for H/T=-' from Table 2

while the remaining eight parameters were given their values at H/T=1.89. We

chose not to include y21=f26 with f23 and f25 because this parameter appears

as a product with N' in eq. (59) and is thus very difficult to establish

on-line. The resulting controller and Kalman-Bucy filter gains are shown in

Table 8. These gains can be compared with those designed to be optimal at

H/T=1.89 and shown in Table 5 and with those designed to be optimal at H/T-

and shown in Table 6. They can be seen to approach the gains shown in Table 6.

The gains in Table 8 represent those of a controller which would adapt only

for changes in f23 and f25 at a time when the ship is operating in deep water.

controller gains CT Kalman-Bucy filter gains K

5.5438 4.6552 0.8716 0.0010

2.4237 19.2058 13.8893 -0.2338

1.8986 3.2965 2.5069 -8.9281

2.4252 0.0343 -0.3727 4.2156

-0.7889 0.0000 0.0000 0.0000

922.36 0.1529 0.2524 0.0568

46.656 -0.1116 -0.1777 0.5040

f23 and f25 for H/T=-; other f.i. for I/T=1.89

Table 8. Gains for Partially-Adapted Design for Tokyo Maru at Fn=O.ll6 -

Random Walk Disturbance Model
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To illustrate the effectiveness of the partially-adapted design given in

Table 8, we simulated the Tokyo Mara under the control of this controller

while being subjected to the design lateral current disturbance shown in Fig.

4 in deep water (H/T=). The resulting lateral offset ,.sponse is shown in

Fig. 21 as the solid line; this is directly comparable to the response shown

for the nonadapted design in Fig. 18. The response with the optimal design

for H/T=-, the fully-adapted design, is shown in Fig. 21 as the dashed line

for comparison. The maximum lateral offset during the startup of the system

is 53.2 m. compared to 50.2 m. with full adaptation and 63.5 m. with no

adaptation. The maximum offset during the ramp change in disturbance level

is 13.9 m. compared to 13.8 m. with full adaptation and 18.5 m. with no

adaptation. Adapting only for changes in f and f thus provides transient23 25

response very close to that provided by the fully-adapted, optimal design.

The rudder angle response correspondinq to Fig. 21 is shown in Fig. 22; the

yrd-ing moment estimatu N' is shown in Fig. 23. Notice that the equilibrium,

mean yawing moment estimate during the first 15 ship lengths is about 0.00126

c-npared with 0.00199 with the nonadaptod design in Fig. 20 and the exact

valuc of 0.00103 which would be produced by the fully-adapted, optimal design.

4-414- -4H-]- -

T!tlE

_4141---4

adated only for f and f , qgtirvnl ,it tH/T ..

Figulre 21. b,,t,,ral] fffs t ! _e:s-,er!; to :)esr;ul ',i,,ral ,'Thrron -

Partial Ly-Adapte, Design and Design for Ht/T' .. OIerat ing at It/Th ' '
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Figure 22. Rudder Angle Response to Design Lateral Current-
Partially-Adapted De!'ilgn Operating at H/7T-,.

I.
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Figure 23. Yawing Moment Estimate with IDesiqn Lateral Curru.nt f

Partial ly-Adapted Design Oprritin1j at HT



Summarizing this chapter, we have shown that effective ship path

controllers can be developed using a random walk model for the yawing moment

and lateral force disturbances. This controller provides effective control

with short-term, essentially zero-mean disturbances as shown in Fi.. 11 and

with more long-term, nonzero-mean disturbances as showni in) Fig. 13. We then

showed that this controller experiences a degradation in transient response

when used at an "incorrect depth" or in any other condition causing the ship

characteristics to change from the values used in the controller design.

At an "incorrect depth" this controller is, however, capable of producing the

same equilibrium, mean response as would the optimal design. Finally, we

showed that adapting for changes in a.: few as two parameters in the equations

of motion can eliminate almost all of the degredation in transient response

experienced with changing ship characteristics. In the following two chapters,

we investigate two different approaches for the design of such adaptive ship

path controllers and evaluate their performance capabilities and limitations.

.. "..i



4. Weighted Least-Squares Parameter Estimator

In this section, we present the derivation and evaluation of a Weighted

Least-Squares (WLS) parameter estimator which could be used in the gain up-

date loop of an adaptive ship path control system. This section is based
14 q

upon Cuong's Ph.D. Dissertation. The WL.S approach requires no probabilistic

assumptions about the uncertainties of the measurements and the process dis-

turbances. It treats the observed measurement data in a deterministic rather

than probabilistic sense. The unknown system parameters are chosen so that

the response of a model of the ship dynamics provides a "best fit" to a finite

record of sensor measurements. This treatment of measurement data is called

"limited memory" or "moving window". The moving window concept was originally
48

proposed by Jazwinski to handle the divergence problem of Kalman filters.
50

Dunn and Montgomery utilized Jazwinski's concept in a batch processing

manner to do the on-line parameter identification for the NASA F8-DFBW air-

craft. This approach is conceptually simple which made it a logical first

choice in our parameter identification investigation.

4.1 Derivation and Development.

The source of information for the parameter estimation algorithm is

the measurement vector z'. Sensor outputs are sampled and the results are

buffered in the memory of a control computer. After LW samples have been

collected, the parameter estimation algorithm starts processing this infor-

mation. Meanwhile, additional measurement data can be ignored until it is

time to buffer another window of data. The timing sequence is illustrated

in Fig. 24 where each graduated mark on the time axis represents a sampling

instant and:

• LU is the length of the parameter estimation cycle,

* LW is the length of the data window,

LB is the length of the batch update calculation period.

A cycle of a typical parameter estimtir ,rocP :;tart!- with a stabiliza-

tion period during which the ship if; run kndier the cont rol (,f rcently

acquired parameter estimates and (,tin matrices C and K. This period allow;

transients caused by the abrupt changes in the parame ter estimates and gain

matrices to die out. This period is followed by the data window loading

-4- -



period in which LW samples of the measurement vector z' are collected and

stored in the estimator memory. The cycle is completed by the batch update

calculation period in which the parameter estimation and gain updates are

performed. This period produces a new set of parameter estimates and new

values for the control gain C and the Kalman filter gain K if the parameter

estimates are judged to be physically reasonable.

new parameter estimates and gains
C and K are incorporated into
controller . A

l I

-- LU

LW Lu -I i-'* {

data batch time

window update
stabilization loading calculat ion

I I i

Figure 24. Timing Sequence for Weighted Least-Squares Parameter Estimator.

After another stabilization period, a new data batch is buffered and

then processed by the algorithm. In this manner LW memory locations per

measurement channel are needed for the moving window. When the states

change very slowly or the time constants of the system are long, the window

has to be very long. This can represent a large memory requirement. The

parameter estimation task can, however, be processed on a time-available

basis.

In the control loop development, the equations ot motion of the ship

were expressed by the 5-state sys;tem eq. (1i). The rudder angle , was in-

cluded as a state in order to introduce a realistic time re,;ponse for the

steering system. We noted in Section 1.2 that the rudler inqle time reson.;e

is known exactly if the rudder time constant, the initial condition . , and
o

the rudder command history are known. Therefore, \(t) wi]l be considered a

known function in this development. The !;y.stem equation; then become,

~-4(,-
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.1 0 1 0 0 ,' 0 0 0

0 22  f23  25 r 21 Y22 ~'
d ~ ~~ ~ = ' ,(1

0 1 0 -1 0 r~ 0 0 0j

or, x~ F + G6'+ Pw .(72)

The disturbances N' and Y' are considered to be stochastic processes in

eq. (71) but this assumption has no effect on the WLS development.

49

Cuong has shown that for a WLS parameter estimation algorithm to

be effective in estimating ship parameters all states must be available

for measurement. The measurement vector to be used in the gain update

loop is therefore taken as,

z' = x + v (73)

where v' is a Gaussian white measurement noise vector which is ignored

within the WLS algorithm. In general, the parameter estimation loop

requires a more accurate level of measurements than does the control loop.

In the simulations presented later in this section, the reference level of

the measurement noise vector v' is as shown in Table 9. This represents a

very small level of noise but is not necessarily the highest level which

could be tolerated.

measurement a.iT r..

0.1 0 0.Ols l.2976x10- 5.0943xl'4

re 0.00160/s 0.Ols 7.7215xlO -10 3281- 4

0.08 0 0.01S 8.2777x<lO0 4.0688K10-

le m 0.01 5.0651-10-9  1.0065l0-

Table 9. Reference Measurement Noise for Parameter 1:stimator v'

-47-
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It was demonstrated in Section 3.4, that accurate e,.;timates of only

two of the 10 coefficients in eq. (71), f23 and f2 5, ar( essential to an

effective adaptive control loop. Our first approach was therefore to select

a parameter vector of minimum dimension, i.e.,

T T
[Pi p p , p ,p4 = [f23' f25' N', Y']

4 22

in order to minimize the computational load. Cuong has shown that this

parameter choice is a condition of underparameterization in which the WLS

algorithm converges to an estimate of p which is completely impossible

physically. Even though accurate estimates of the other coefficients in

the open-loop dynamics matrix fi are not really needed by the control loop,

these coefficients must be included in the parameter set to be estimated

by the parameter estimator. If they are not, the effects of errors in these

coefficients are interpreted as changes in f23 and f 25 The parameter vec-

tor to be estimated by the parameter estimator must therefore be taken as,

= P .... p 8T = [f22' f23' f25' f3 2
'  f 33' f35' N', Y,]T. (74)

Recall that the disturbances N' and Y' are estimated by the control loop

Kalman filter and these estimates are actively used for control purposes.

The unknown disturbances must also be included in the parameter set. If

they are not, the effect of the disturbances is interpreted as changes in

the system parameters. The disturbance estimates produced by the parameter

estimator are only a by-product of the estimation process and are not used

further.

For use in the WLS parameter estimator, the ship is modeled by the

state vector x = [M' Tr , ' , ' I and the following equations:

02 1 0
m- m' m I Im

I r 7
r 0 pl Pr 1 r' -1

4 m 31 4 5 '

i1 0 - i 0

I L J L L

(71-)
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where the values of the coefficients in the matrix are as:,-iqned conet.nt

assumed values indicated by (. .). Thc .ec "known" coefficic'nts are ,is::iInti

their value at the ship's least-course-stable depth-to-draft ratio H/T--l.69.

With p, 
= 

N' and p, = Y' , the parameter estimator ostimates the average

values of 11' and Y. These estimates, however, are not very accurate because

the y. coefficients are kept constant at assumed values. The e:timatcs
3]

of N' and Y' include the effects of these errors. Since we are not interested

in the values of the disturbances, per se, this arrangement is clearly

acceptable.

At the beginning of the parameter -stimation, the computer memory holds

the system states at the start of the data window and the rudder angle '

and measurement z' histories during the data window. Using any set of the

parameters p, the buffered state at the, start of the window, and the buffered

rudder angle history, the ship model ecI. (75) is simulated through the same

time period as the window to produce x k where k is the sample time index.

This yields a set of model measurements fix which fill the data window

and a Weighted Least-Squares cost function or fit error J can be defined as:
LW c6

J = L (zI -Hlx T W(Z I -Hx (6
2 - k W ,k k k -Mk

The weighting matrices Wk can be used to adjust for dimensional differences

among the measurements or can be used to place more emphasis on matching

selected measurements or on matching the most recent measurements. The

weighting matrix is assumed to be diagonal so the cost function J can be

expanded to give,

LW (z' w 2)1 L zV _,2 w (z' - r' )2 w + (z' m w

2 k=l m'k 1k 2 k k 3 m) Wk

+ (z -n 1)2 W (77)
Sk w 4 k

The WLS parameter estimation problem if; then to vary the parameter estimate

p to produce the parameter estimate vector j* which yields a minimum of this

cost function. This causes the response of the ship model as represented

by the model measurements to be a least-squares fit to the measured response.

The minimization of the Weighted Least-Squares cost function, eq. (77),

-49-
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can be accomplished iteratively using any of a number of numerical algorithus.

Dunn and Montgomery used a modified Nu'wton-kapShon algorithm, It i -di Ifi-

cult and expensive in this problem, howeve.r, to numerically estimate the

gradient of J needed by this algorithm. This3 is tespeciall-; true if an on-

line application is desired. In this situation, a dcrivative-free alqorzt'nj

is very attractive. It is also desirable to make efficient uso of previousl,

computed function values. After preliminary work with a number of alternative

methods, the DUD (Doesn't Use Derivatives) algorithm was selected for use

here. This algorithm was developed by Ralston and was presented by Ralston
r. L+ 9

and Jennrich in 1978. Cuong extended the DUD algorithm to the Weighted

Least-Squares problem and added additional search stopping conditions needed

for its application to the ship parameter estimation problem. The DUD

algorithm does not require the gradient of J as the name implies. Once the

algorithm is started, only one evaluation of J is needed in each optimiza-

tion cycle performed under normal conditions. DUD has proven to be an

effective and efficient search algorithm for this problem.

As noted above the diagonal weighting matrices Wk in eq. (77) can

be used to assign different levels of importance to the various measure-

ments. They can be varied with the time index k to account for a lower

confidence in old data. They can also be used to achieve a non-dimensional-

ization of the various errors in fitting the model response to the data.

In our work, the Wk were chosen to be constant with time. Recall that in

the solution of the Linear-Quadratic-Gaussian state estimation problem,
-1

the innovation is "weighted" by R , where R is the spectral density of

measurement noise. It is reasonable to use a parallel approach here and
-1

select Wk=W=R . This accomplishes a desirable non-dimensionalization

and reflects the relative noise I-vels in each measurem nt. Using this

approach, the DUD algorithm was found to require about 171 fewer evalua-

tions of J to converge compared with runs using an eciual weighting; i.e.,

Wk= I where I is the identity matrix.

The simulation of the ship model, eq. (75), begin:s from the buffered

state of the system at the start of the data window loading priod. We have

found that when realistic noise exists in the system, it i. preferrable to

use the estimate of the state at this point produced by the control loop

Kalman filter rather than the noisy measured state:i. Thei tate estimate

!.



is an expected value of the state at the start of the window loading period

and is not strongly affected by the noise at that time which probabilisti-

cally might be large. It is undesirable in general, however, to use fil-

tered data in parameter estimation ;o all of the data in the moving window,

except the initial values, are taken directly from sensor measurements.

This ensures the maximum information content in the data base.

We noted above that the parameter estimates p* or produced by the

DUD algorithm in the WLS parameter estimator are only used to calculate

updated controller gains C and Kalman filter gains K if the estimates

are judged to be physically reasonable. In our work, we performed this

validity check by noting the expected range of each parameter given in

Table 2 and the sensitivity study results discussed in Section 3.4 which

showed that the control loop needs accurate estimates of only the two

parameters,f and f25 The validity check, therefore, utilizes the fol-
23 25*

lowing logic:

if either f23 or f25 is beyond the permissible range, as given

in Table 10, no update is made; i.e., the controller remains

unchanged;

if f23 and f25 are within the permissible ranges but some of the

remaining estimates are beyond the permissible ranges, only f2 3

and f25 are updated in eq. (59);

if all estimates are within the permissible ranges, all the f.1

are updated in eq. (59).

If an update is to be made, the new feedback gains C and filter gains K

are calculated as described in Section 3.3. The results are then incor-

porated into the controller.

Parameter Lower limit £ Upper limit u

f-2.50 -1.10

f23 2.1.0 12.00

f25 -1.30 -0.30

f32 0.0 0.42

f -1.30 -0.30
33

-. 22 0.n

based upon experimental range + VA.

Table 10. Permissible Ranges of Parameter Fstimatef,: for thf, Tokqo Miiu.

-51-
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The development of the WLS parameter e:;timator is complete at this

point except for the addition of an open-loop excitation or input dither

signal which will be shown to be necessary in the next section. Before

proceeding, however, it is appropriate to review some of the alternative

parameter set choices which were found to be unsuccessful prior to our

choosing eq. (74). Cuong discusses these in detail so only brief

comments will be included here. The following parameter choices were

considered:

p 7 = Y2 1 N', P 8 
= Y2 2 Y'

' P9  1 N' 0 = 
Y

P7 =21' P8 N, =32' PI0 ' 2z " 22 13 131;

= P8 
=  N, 

3

P7 = 21' 932' N = N ,' = 22 ' 22' 1 Y31

In the first approach, the r and equations included terms p7 + p8 and

i-9 + ) lo, respectively. The WLS algorithm quickly produced physically im-

possible r-sults with the terms in these sums having very large, equal

magnitudes hut opposite sign. In the second approa-h, the r and

equations involved products of parameters; i.e. p7P8 and p Pl0, respectively.

The coefficients; (22 and y31 were given constant, assumed values. The DUD

algorithm failed to converge in this problem. The third approach would use

the yawing moment and lateral force disturbance estimates from the control

loop Kalman filter in the parameter estimator. This approach was not actually

tried but was discarded because it would produce a highly undesirable coupling

between the state estimation filter and the parameter estimator.

4.2 Time-Invariant Parameters Performance

In this section, we evaluate the performance of a WLS ship parameter

estimator when the parameters are time-invariant. With the WLS parameter

estimator each parameter estimation cycle is a completely independent

process. The only information used from the previou:s cycle is the old

parameter estimate which is used as the initial estimate in the DUD algo-

rithm search. This initial estimate affects the converqence,_ rate of the

search but has negligible effect on the res;ulting parameter estimate.

Therefore, time-invariant parameters in this context requires that the

- ).2 -



parameters be constant only during each data window loading period. The

parameters could vary from one window loading period to the next. The

stepped bottom profile shown in Fig. 25 was therefore used in our simula-

tions to evaluate the effectiveness of the WLS parameter estimator with

locally time-invariant parameters. The timing sequence was selected so

that the window loading period would not overlap one of the discrete changes

in water depth. Ship parameters can of course change due to many causes;

i.e., draft, trim, water depth, etc. Rather than change the parameters in

a completely arbitrary and random manner, however, we chose water depth

as the independent variable to use to ;tudy the effect of physically possible

parameter changes.

0 1 2 3 4 5 6 7 8 9 10 11 12
I I t I t I, I I ,, I -t'

surface H/T=1.30

H/T=i. 89

H T=3.0

Figure 25. Stepped Bottom Profile

The signal-to-noise ratio is critical to the effectiveness of a WIS

ship parameter estimator. The signal here is the measurement vector z'

which is contaminated by the noise v' which will be at least as large as

shown in Table 9. For the measurements to contain information about the,

dynamic characteristics of the ship, it is necessary that the ship trajec-

tory include motion which is large compared with the noise level. This

requirement is in direct conflict with precise ship path control whic..

seeks to eliminate any motion from the desired track. The information

content of the data window can be increased by increasing the amount of

ship motion and by lengthening the data window. In off-line systems iden-

tifi-ation of ship parameters the "data window" is usually many minut

-5 {-



in which the ship travels many ship lengths. It is usually considered neces-

sary for the record length to be at least a few times the longest time constant

of the system for successful identification using noisy measurement. The

tests are conducted with constant ship characteristics and in unrestricted

waters so that significant ship motion can be used. In path control in

restricted waters, ship motion must be restricted, calculations must be per-

formed on-line, and the ship parameters may change significantly over even

a ship length. Parameter estimation in this context is very difficult and

requires very low levels of acceptable noise and engineering tradeoff in design.

The parameters f.. which the WLS parameter estimator must estimate are

the open-loop parameters of the ship. During path control, however, the

dynamics of the ship are governed by the closed-loop properties of the ship
o 11

and the control loop. Further, Astrom and Wittenmark have noted the fol-

lowing conditions as necessary for the convergence of a least-squares para-

meter estimator:

the system must be persistently excited by the input signal;

the input signal must be independent of any disturbances.

The estimation of open-loop ship parameters in the presence of disturbances

and the path control are basically incompatible and cannot be undertaken

simultaneously. Thus, an adaptive ship path controller must devote itself

alternately to parameter estimat ion usinq open-loop rudder commands and then

t>; path control. If the rudder commands are generatedi by the feedback con-

troller during the data window loading period, the input will be e(rr,-

lated with the disturbances and it will not b., possible to determine all

parameters. Further, the controllers used here will generally not allow the

level of ship motion needed for the parameter ,estimation. Adaptive path con-

trol must therefore accept increased ship motion durinq the window loading

:,riod. The- improved performance from having better parameter estimates must

offset the effects of the periods of open-loop control.

The open-loop input signals u.sed in adaptive controllers are often

-::iled dither signals. They usually have a zero mean to reduce the long

term effect on the system. In highly dynamic systems such as aircraft



the dither signal could be superposed upon the pilot's input commands

and continuous small dither signals have been proposed. In the ship path

control problem, the signal-to-noise ratio is such that the dither signal

magnitude must be so large that continuous use would be unacceptable. Al-

ternate periods of open-loop control using the dither signal with the

control loop turned off followed by closed-loop control without the dither

signal are used here. The purpose of the dither signal is to excite all

modes of the system and to maintain them at large enough amplitudes for

the parameter estimation to be successful. The signal should therefore

include all the open-loop natural frequencies of the system.

In this investigation the dither signals were chosen to be square

wave rudder commands of various amplitude and period. An alternative might

be the Pseudo-Random Binary Sequences (PRBS) used in systems identification
17

of ship parameters. In general, the larger amplitude dither signals

excite the ship more and improve the effectiveness of the parameter esti-

mation. With a physical limit on rudder angle of about 350, we have used

a dither rudder command 6 ' magnitude of 0.5 rad. in all the simulationsc

presented below. With short dither periods, the rudder does not have time

to reach this commanded value before the sign of the command is reversed.

A magnitude of 0.5 rad. already stretches the validity of the linear

system equations so higher values were not considered. The initial dither

signal (at the beginning of the window loading period) was given a sign

opposite to the rudder angle existing just prior to that time in order to

maximize its effect on the ship. Since the square wave dither signal is

used for only the finite window loading period (not continuously), it

can excite frequencies below the fundamental frequency of the signal.

4.2.1 Effect of Data Window Length and Dither Period

Various simulations of the Tokyo Maru were performed to evaluate

the performance of the WLS parameter estimator. In our earliest work, we

simulated the Tokyo Maru under the control of an adaptive control system
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using a WLS parameter estimator when subjected to only 0.001 times the

reference noise level given in Table 9 while sailing over the stepped

bottom profile shown in Fig. 25. A short data window of only 0.2 ship

length was used with this low noise level; the parameter estimation was

performed once per ship length. Starting with an initial offset from

the desired path of ri'= fi'=0.1638 (R beam) and using no dither signal,

the WLS parameter estimator failed to work. Since the simulation started

with a reasonably large initial condition, thero was large ship motion

in the first two ship lengths and the mea!.urements thus contained a rea-

sonable amount of information about the system. The estimator converged

in the first cycle and gave poor estimates which were in the permissible

ranges given in Table 10. By the second ,'ycl,,, the s;hil notion had died

out to a large extent and there was mucd l,,:;s inform.t ion coritained in the

response. As a result, even thouql. th - ,lq-,rithn .ri' -onverqe1, the

estimates were outside the Pelrmyi ; ihi rt .: t t-hird cyicl,, the

path controller had sFuppre;e-;,d mot , : I: met , .in I t 114 shil was!

moving almost in a straight linea. in i,, m,,t f is,-f rmation whi c

could be extracted from t!i, :m I T, n , ' ' .: - ,1 11: . mI.;k- 1: the

measurement noise (ev t .. t T. , vii. The

DTD algorithm failed to corv, . . '. ' . . lolrl- lata

window would !-(, of no v.lii, i, . ,.' 1 i t 11(

signal with a i riIo f . i! " . I, I" Ii nt, ildow

length to n. 5::hi t  len it 1: (1 vorn .

quickly converged to e:timat,, W} . 1 , ii rt

figures in all 12 update r ri, .. . !.... , ,iI : tt7'' V, si' .ity

of a dither signal and v. ilI ,,. :: , . I

With the use of the r1,vre-' v 1 ila r , in,. .l 1;, ,iverl in

Table '), the WLS paramt,-r ,;t infator wil n' r, Is1,, t., reslts

if the data window l(,i.lunj p ri,, d i ,, ill ,.. .i,,, ti ,,. iith-r :;ignal is

used. The effectiven !;ss i:; .l;, n v, * I :.':i v t h. l'n'th of the,

dither period. Table 11 .lummariz-. t !, r,. ul:t f t tit firsti updatf, ,'',It,

of simulat ions of tht, Tok o , i, , :;aiI i,I; .,,-,.- th, .:,1 I ;.ott,,m ';hOwn in

Fig. 25 under the cont rol of an alapt iv,, I t 1i r-tnt r r n i :q tif,. WI'S

r '( _



parameter estimator when subjected to the reference level of noise. Results

are shown for various data window lengths and dither signal periods. The

initial value of each parameter is only used in the first cycle; in subse-

quent cycles the most recent valid estimate is used as the starting point

for the DUD algorithm search. With a data window length and dither period

of 0.5 ship length, the results failed the validity check and the algorithm

failed to converge at all after the depth change at t'=3. Results are also

shown for a data window length of 5.0 ship lengths (1000 samples) and dither

periods of 0.5, 1.0, and 5.0 ship lengths. In these cases, only one update

period of 6.0 ship lengths was simulated. In general, the parameter esti-

mates are reasonably good and improve with the dither signal period.

initial correct WLS parameter estimates using
parameter value value window length (ship lengths)/

H/T=-l.89 H/T =-  dither period(shi) lengths)

0.5/0.5 5.0/0.5 5.0/1.0 15.0/2.5

f22 -1.7657 -1.9515 1.2835* -1.8179 -1.8323 -1.8582

f23 5.7359 3.1591 -9.8155* 2.8715 2.8902 2.648

f25 -0.88074 -1.0410 -0.9310 -1.1146 -1.0229 -1.0216

f32 0.17199 0.31507 0.95165* 0.36378 0.32584 0.31693

f33 -0.52766 -0.63651 -3.1628* -0.72829 -0.64829 -0.63519

f -0.15607 -0.16163 -0.13373 -0.15646 -o. 16053 -(. 16101
35 1________ 1 _ _ __ _ 1_ __

offset n' at end of data window -0.0005 -0.2854 -0.5706 -1.435
number of evaluations of cost J 68 60 107 66

* estimate outside permissible range in Table 10

Table 11. Effect of Data Window Length and Dither Period on WLS Parameter

Estimates Without Disturbances.

The results shown in Table 11 for the 5 ship length data window .tril

0.5 ship length dither signal probably represent about the best estimate:,

that could be achieved with a WLS parameter estimation in a ship path cork-

troller. The offset due to the dither signal at the end of the data window

is about 83m or 1.74 times the ship beam. Shorter window lengths and shorter

dither periods would reduce this value but produce less accurate parameter
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estimates. Simulations results with a 2.') shii! Itngith data win:dow

are shown in the next section. Since we ;howtA i n S, t- iou 4 that the con-

trol loop only really needs accurate estimates of f,) and f ,5, the accuracy.

of the estimates of only these two parameters should h, t he bas;i:: of judqiiiq

the effectiveness of a WLS parameter eotimitor desigjd for use in, an adaptiv(

path controller. A design tradeoff would be necessary to achieve the btust

overall performance of the path controller. The longer dither periods could

not be used in a path controller but are of interest if a WLS parameter

estimator were to be used for system identification in unrestricted water-.

It is interesting to note in Table 11 that the short dither period

allows good estimates of the parameters in the r-equation (f.,f and f,)

but relatively poorer estimates of the parameters in the i -equation

(f32 f and f ) . The longer dither periods, however, siqnificantv im-
32' 33' 35

prove the estimator's ability to estimate the parameters in the ,-equation.

This can be explained by consideration of the system time consctants and

eigenvectors. The open-loop eigenvalues and eiqenvectors of the 5-state

model of the Tokyo Maru include two zero t.iqenvalues and a thild associated

with the rudder time constant. The other two eiqonvalues and the associated

eijenvectors for deep water art as foll-ws;:

k4 = -0. 0992, 14 = 10.08 shi[, lenqths,

T
4 = [-0.0933, 0.0093, 0.0054, 0. .1, 0.01

5  - -2.489, 15 := 0.4(' ship length

= [-0.3669, 0.3132, -0.1551, -rf),1..) , 01

F;igenvector : has a time constant of ',.. :hi] lenqtl anl is; (3ominate,] h~y

the second component (r ') . A dither i, i of ).- ihip lenith is effo't iv

n xcitinq this mode and thus allow!- ,ft iv,':;t matio. of theI ara-

metrrs in the r-equation. E eniv,tor - i. ,hmin. .I ,y the fourth 'em-

ponent ( '). Althouqh ' i: only a weak Amon'nt of einvest,



it is directly fed into the ri-equation and n is the main component of
-4.

With a time constant of 10 ship lengths, this mode is more effectively

excited by the longer dither periods thus making the parameters in the

a-equation more identifiable.

4.2.2 Performance with Bias Disturbances

In a ship path controller application, the WLS parameter estimator

would also have to estimate the yawing moment and lateral force distur-

bances acting on the ship as included in eq. (74). To evaluate the per-

formance of the WLS parameter estimator with time-invariant disturbances,

we simulated the Tokyo Maru under the control of an adaptive ship path

controller using this algorithm while being subjected to a constant

1-knot lateral current as defined in Fig. 4 for t'<15. This disturbanc(

was held constant for 18 ship lengths; the reference measurement noise

level from Table 9 was used. The controller and parameter estimator were

intialized with ship parameters for H/T=1.89 but the ship was simulated

to be actually operating in deep water (H/T='). The initial conditions

for these simulations were the steady-state conditions for the control

loop; i.e.,

' = ' = ( '= ' : -0.1428,

r = r' ' = 0.0,

6' = 6' = 0.1310,

N' = 0.001992,

Y' = 0.003437

The disturbance shown in Fig. 4 is not exactly equivalent to a lateral

current when the ship is at any depth-to-draft ratio other than H/T=I.89

for which it was derived so the steady-state rudder angle is not zero.

The constant disturbance simulations used a parameter estimation cycle

of 6 ship lengths (LU=1200 samples) and three combinations of data window

length and dither period. The results of the first parameter estimation

cycle of these simulations are shown in Table 12. The results with window



length of 2.5 ship lengths (500 samples) and a 0.5 ship length dither period

are excellent. Results with a 5 ship length data window and two dither period:=

are shown as a reference point fox the effectiveness of the WLS parameter e,-

timator. These designs would be impractical in a path control application

due to the excessive offset from the desired path. Thesc paths would also

clearly violate the validity of the linear ship mode l. Thle effects of the

assumed constant values for the y.. coefficients in eq. (75) on the estimates1)

of the disturbances N' and Y' can be clearly seen in Table 12. In addition

to allowing a more reasonable offset from the path, the reduction of the

window length from 5 to 2.5 ship lengths reduces the computation cost of

each evaluation of the cost J by about one-half so the shorter window length

results in about half the data storage and computational load with only a small

loss in parameter estimate accuracy.

Sinitial correct WLS ,aiameter ostimates using windowl
'parameter value value lonnth/dither period (sh tI tl --- h_. ith-_ -_ri 1d-(shij_ lengths)

_H_/__ _=- 1.89 1/5 % . /('.5 5.0/2.5

f -1.7657 -1.0515 -20037 -1.1)722 -1.9505

f 5.T .1.2540 1.,21)u7 3.15442 3

f25 -0.88074 -1.41 -. '1.4 -1.0415 -1.0406

2- f3. ' 171'i , 31 r,)7 u. [! s6- 3. 3 1',7 e 31412

f -0.766 -0.C6466 -0.63414

f - . ,607 -1. - -. .16076 -0.16169

'X1
r  

r, I, ' n:), r , 1 " 9 P7 {. 1 0s 4, ,.] .

Yx10, s. s n 0. 23'77 f ' .3 1iK' 0 2. 34u -i

offset -' at enI of cycle 2.1741 1.27? '.-.'>
numbe r evaluation,; of :)1;t 113 112 75
fin Il cost .X.0. 0.1059 L. () IQ I ):

Table 12. Effect of Data Window 1n,'qth and Dither Poriod on WLS Parameter
-stimates with ConsLant TSisturbanee::

:'o further illustrate th-, rf4.rrance of the WITS parameter estimator

wit? 'I,.,:. ship length data window and 1 0.' . ]ntth dither period whe.n

slitected to a constant disturbanci-, t he. !;hi traj-,-tory for t he .imulat ion

:;how' in Tahle 121 is .;hown in Fi q 2,. v"i,;. 2(, " w!; '-. lateral uff e;,t



response of the ship for the first three update periods or 18 ship lengths

The dither signal has a zero mean rather than a mean value corresponding

to the equilibrium rudder angle for the constant disturbance when the

controller is using the initial parameters. As a result, the first dither

period gives the ship a strong motion to the right (n'>0). This produces

improved estimates in Table 12 compared with the corresponding results

in Table 11. As soon as the controller is updated with nearly correct

parameters at t'= 6 .0, the equilibrium rudder angle is essentially zero

and subsequent dither periods have less of an effect on the ship's

offset from the desired track. The maximum offset is almost one-half

ship length during the second update cycle. The simulation represents

a type of "start-up transient" for the adaptive control system so the

lateral offset in the third update period more closely represents the

offset which the dither signal would cause in subsequent update cycles.

0.5

0.4 data window length 2.5

0.3 dither period 0.5

0.2

0.1
12 t' ship lengths

0.0
6 18

-0.1
data window loading periods

-0.2

Figure 26. Lateral Offset Response to Constant Disturbance - WLS Para-
meter Estimator.

The parameter estimate results for the WLS parameter estimator simula-

tion shown in Fig. 26 are shown in Table 13. The estimates were acceptable

in each update. The Kalman filter ship equations and the gains (7 and K

were therefore updated at the end of each r:ycl,,. Since the initial parImf,,1r
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estimate for the second and third estimation cycles was the estimate

produced by the previous estimation cycle, the number of evaluations

of the cost function decreased significantly after the first update.

The accuracy of tLe estimates of the 6-equation parameters appears to

decreise as the ship motion is reduced. in general, the i:rametur esti-

mates are very good. Recall that the disturbance estimate:s are never

used. A shorter data window length might continue to produce parameter

estimates of acceptable accuracy with a smaller offset from the desired

path. Further design tradeoff studies could establish the best comprumise.

initial correct WLS parameter estimates using
parameter value value 2.5 window length/0.5 dither period

9 H .89 /T- update 1 update 2 update 3

f22 -1.7657 -1.9515 -2.0037 -1.9258 -1.9306

f 5.7359 3.1591 3.2540 3.1177 3.1414
23

f -0.88074 -1.0410 -. )424 -. .n414 -1.0405

f2 0.17199 0. 31107 3. 32-63 0. 36511 0.28817

f -0. 52766 -0(. 63 6 1 -0. C5439 -0.72306 -0.5963333 
07

f -(.15607 -0.16163 -.. 1)388 i -f). 10289 -0.16275
02 1 1 .

Nx1.0 0.00000 . 1I2 62 0.12907 1 ]12561 0.12541

Y' %0 J 0.00000 0.23277 0.35415 k)I4() ,.3107(

maxim-mn offset 2' in cycle 1 "45 0. -i7 G.1257

number of evaluations of cost J ] 1 2) 19

final cost Jxl0 2.1 i .i 1. I

update time L 1 10

Table 13. Parameter Estimates from Constant [Visturbriec :-imulatin

4. 3 Time-Varying Parameters Perfo,_)rmanrice -

In this section, we evaluate the W' .rrna, a W ,ai mt. r

estimator when the parameters are time-varyin,. In t t I" I . j,:,

we considered the performance when the tarametrs, w,,, -t Stant Jar ', , ,

data window loadinq period which might L;ave to Ix- I,; ri, .i : . :;.



The parameters could however, change from one parameter estimation cycle to

the next. Here we consider situations in which the parameters change contin-

uously during the data window loading periods. We continue to use the water

depth as the independent variable which defines the changing parameters. We

consider two cases. First, we consider the situation in which the water depth

is changing continuously so that the ship coefficients are changing in a con-

tinuous manner. We then consider the situation in which the disturbances in

the parameter vector, eq. (74), change continuously during the data window

loading period as they would when the passes another ship or fixed obstruction.

4.3.1 Time-Varying Ship Coefficients

To evaluate the performance of the WLS parameter estimator with continu-

ously varying ship coefficients, we simulated the Tokyo Maru under the control

of an adaptive path controller using the WLS parameter estimator while sailing

over a downward sloping bottom. This simulation was performed without any

measurement noise using a very short data window loading period of only 0.2

ship length. The update cycle was 0.3 ship length. The bottom profile was

constructed to be level at H/T=1.89 during the first data window. The esti-

mator was initialized with parameter values at H/T=1.89 and this startup period

was introduced to allow the system to stabilize prior to experiencing a change

in parameters. From time t'= 0.35, which was the beginning of the second up-

date period, the bottom began a downward slope in which the depth-to-draft ratio

increased linearly at a rate of 0.105/update or 0.350/ship length. The results

of the first 10 updates in this simulation are summarized in Table 14. In

many updates, the estimates were far from the true values. In many instances,

the algorithm produced parameter values which were beyond the permissible ranges

defined in Table 10. The estimates began to improve somewhat after the initial

transient caused by the abrupt change in bottom slope at t'=0.35. Net ice that

the estimates do not approximate the mean value of each parameter durinj the

data window loading period as would be desired. Con~iiderinq that the simula-

tion summarized in Table 14 is without measurement noise and used only a ).2

ship length data window, we conclude that the WLS parameter estimator can not

effectively estimate time-varyinq ship coefficients. With realistic measure-

ment noise, the data loading window period would have to be at least two ship,

lengths as shown in Section 4.2. The bottom slop e u, zeJ iir th, imnul dtln !;um-

marized in Table 14; i.e. about one draft in three -hi p lenqthf;, is not un-

realisticly high.
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The failure of the WLS parameter estimator to effectively estimate time-

varying ship coefficients can be explained by considering the formulation of

the algorithm. The true ship response can be considered as the response of a

system of time-varying linear differential equations. The coefficients in

these equations vary continuously during the time period of the data window.

The ship model, on the other hand, is the time-variant system, eq. (75), and

we seek the parameter vector p* which minimizes eq. (77). We expect this para-

meter estimate to be within the permissible ranges defined in Table 10 and fur-

ther would hope that the estimates are the mean values of each parameter during

the data window loading period. There is no guarantee at all that the constant

parameter p* which minimizes eq. (77) will meet these objectives. The results

shown in Table 14 show that even without measurement noise and using a unrealis-

tically short data loading window period the estimates do not meet these objec-

tives.

4.3.2. Time-Varying Disturbances

Even when the ship coefficients are essentially constant during the data

window loading period, it is possible that the ship will be subjected to exter-

nal disturbances which vary over this period. To evaluate the performance of

the WLS parameter estimator in this type of situation, we simulated the Tokyo

Maru under the control of an adaptive path controller using the WLS parameter

estimator while sailing past another ship. The botts.m was assumed to be constant

deep water (H/T=-). The ship was given zero initial conditions x= =0; the con-

troller and parameter estimator were initialized for parameters at If/T=1.89.

The reference measurement noise from Table 9 was utilized. The ship was simu-

lated for 15 ship lengths. It was simulated to pass another ship as defined

by Fig. 3 beam-to-beam at t=7. The WLS parameter estimation cycle was 5 ship

lengths. The data window length was 2.5 ship lengths; the dither period was

0.5 ship length. With an update period of 5 ship lengths, three update cycles

were completed during the simulation. The effects of the pas;,ini ship were

felt from t'=5 through t'=8.5 so the disturbance was present duriiq th( first

part of the window loading period for the second update.

A summary of the results of the three update cycles of the simulation is

presented in Table 15. During the first update, the parameter estimates, pal-

ticularly f 2 3 and f 2 5 which are needed by the control loop, are close to the

- ()5-
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true values. The disturbance estimates N' and Y' art within tile noise levels

corresponding to these quantities. At the end * f t'iis update cycle, the para-

meters in the Kalman filter ship model wr( utd~ited. Jew gain matrices C and

K were calculated and updated in thens." ;ter. *: the :;ecOnd update period

the passini ship di sturbance start:s to act at' ' :1. ti,-, snip is ruw: nn

under the command of the updated contrl . ?r.........., te disturbance. reach

their maximum values of about:

N'xlO = -20.4,

5Y'xlO = 48.0.

The second data window was loaded from t' . U -'.ring tis

period, the disturbances declined f-om their -,'ak values to :ero at t'=8.50.

The DUD algorithm search was very slow to converge in the second cycle and the

results were bad. Three parameters were outside the, permissible ranges defined

in Table 10. Since the estimate f was beyond ti, c,urmissible range, there

was no update. Durinq the th i ri u d, Foi. i oid, thu di sturbanice was cone.

The parameter estimates were good and the controller was updated a second time.

initial correct WLS parameter estimates using

parre tevr vaue Value 52.5 indow length/0. 5 dither period

li/T1. 89 k/Thc uaate update 2 update 3I______________- -.-- I--
f22 -1. -It, 57 --. 9515 1 -1.04Th5 -,.62936" -1.92472i

f5-.7359 3. 1) 1 3. 217,; -1.8532" 3.0732

3 -282-74 -. 1 -.. o:2 - . - .0434

f 3 2  0.17199 0. 311'7 0. 33210 j. 18843 0.30193

f -0.52766 -30 - . 93r'4 -1. 7864* -0. 7c178

f -0.15607 -(. 16 I -I . 1627 -0.17338 -0.16349N' 5 X 0.0000 F varying -0.175(4 -6. 2745 0.11698

Y'Yx... ). 00I) varyin,; 6.6942 67.778 -6.9666

maximum offse t n' in ')ce .o .1394 -0. 2154

offset ' at end of cvrc l 0.o).0 F -Of.0953 0.1511

number of cvaluation,; of .T 't 3 313

final J x 10 (. 2 2. 1-,2 0.1031

update time 10 15

S-- --

*tilmat outsidl I Illqe in l D0 '

Tat.e 15. 1). 1r lmetier sit imIat e ; f I, m Pa:; p .1; i ill I ]I -



We con:lude from this simulation that the WLS parametel estimator cannot

estimate the parameters when there is a significant time-varying distur-

bance present during the window loading period. During the second update

sho. n Table 15 the algorithm tried to approximate the time-varying

disturbances by constant quantities N' and Y'. In the process, it adjusted

the other parameter estimates to minimize the cost J. Since the relative

effect of t- -;turbances on J is much larger than the changes due to the

system parameter,;, the final estimates of the system parameters were sub-

stantially off. The system protected itself, however, through the check on

the validity of the parameters. When the parameter estimates in the second

update failed the validity check, no update was made and the controller con-

tinued to operate with the gains obtained in the first update. The slow

rate of convergence in the second update is also an indication that time-

varying disturbances were present during the data window loading period.

Thus, the estimation process could be stopped without an update after a

prescribed number of evaluations of the cost function as further protection

against invalid results.

4.4 Computational Requirements

The WLS parameter estimator would place a fairly large dynamic data

storage and computational load on an onboard computer. The parameter esti-

mation and gain update calculations could, however, be performed on a batch

basis as time is available. In developing the simulation program used in

our work, we made no serious effort to conserve storage locations or CPU

time. The program was therefore very expensive to run. The Euler integra-

tion step-size used in the various simulations presented above was taken as

0.005 ship lengths or about .24s. For convenience, this was also used a

the sample time. In a practical application of a WLS parameter estimator

on a ship such as the Tokyo Maru, the sample time could easily be extended

to perhaps Is. With a data window of 2.5 ship lengths at the 12 knots used

in our simulations, the data window would require 120 locations for each of

the four measurements and the rudder angle plus an additional 4 locations

for the initial state. The DUD algorithm as used here would require another

4057 stoiage locations. This would give a total number of dynamic storage

-67-
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locations of 4661 for the implementation of the WLS parameter t';timator

A WLS ship parameter estimator would therefore he feasible but it would

place fairly heavy storage and CPU time demands on an oniboard computor. If

lynamic storage were a limiting factor, alternative :;earch algorithms could

be considered. For example, the Nelder and Mt-ad STM;'L: ilqorithm wa:; used

in some of our earlier work. This algorithm generally required more iterations

than DUD to converge but would require only 81 additional dynamic storage

locations. This would give a total number of dynamic storage locations of

only 685. The reduced storage would be offset by a greater CPU time require-

ment.
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5. Minimum Variance Parameter Estimator
In this section, we present the derivation and evaluation of a Mini-

mum Variance Parameter Estimator (MVE) which could be used in the gain up-

date loop of an adaptive ship path control system. This section is based
49

upon Cuong's Ph.D. Dissertation. The MVE is a probabilistic digital fil-

tering technique which can be used to determine a set of parameters of the

ship equations of motion. The filter gains are chosen to minimize the trace

of the estimate error covariance matrix. It is a recursive filtering tech-

nique where the new parameter estimate is formed from the previous estimate

plus a proportional constant times the innovation. The filter gains and pro-

pagation of the error covariance can be calculated recursively based on pre-

vious values and recent measurements.

The derivation of this parameter estimator parallels the derivation of

the state estimation Kalman filter. It is more complicated, however, because

the measurements are contaminated with both additive and multiplicative noise.
"14

This method was first proposed by Kotob and Kaufman for a linear system

with measurement noise, time-invariant parameters, and no process disturbances.

They used this filter to estimate the system parameters of the F-8 )FBW air-

craft. They showed it to be more efficient and effective than an Extended

Kalman Filter and a Weighted Least-Squares Parameter estimator in three simu-

lated performance tests. They also proposed an extension for time-varying

parameters. Here we extend the MVE approach to accommodate zero-mean process

disturbances and time-varying parameters.

5.1 Derivation and Development

The Minimum Variance Estimator is a linear parameter identification

scheme which has three inherent restrictions. First, the equations of motio)n

must be linear in the estimated parameters p. Second, in order to separate

the state estimation problem from the parameter identification problem, it

is required that all states be available for measurement. Finally, the al-

gorithm as developed here can accommodate only zero-mean process disturbances.

The ship path control problem must be formulated to satisfy the restric-

tions of the MVE. First, the linearity requires that there be no coupling

I)-



amonq the et-tiinatoe parameters. This (Ondif P)L ij : ,,O t m;a cii Ivat ,U jed

if we choose the parameter vector to be:

T

[ ( ' 'f 'f 'f 'f 
(]T

22 23 25' 32 33 35

The separation condition demands that we utilize the 4-state system because

we can measure only ,' ,r',2', and q'. The external yawing moment N' and

side force Y' are not available through direct measurement. Any attempt

to use their estimates from the Kalman Filter in parameter estimation will

represent a coupling between state and parameter estimators which we want

to avoid. Fortunately, the precise knowledge of the disturbances is not

necessary in this case since we only need the covariances ot the disturbanlces

in the calculation of estimator gain.

As mentioned earlier, the MVE is a recursive filtering technique which

:iakes it well suited to real-time operation. A possible timing sequence for

:.i- algorithin is shown in Fig. 27. The param(ters are not identified at

evcr' measurement sample time. In this case, the parameters are estimated

at intervals of f =10. (The derivation of this algorithm requires that

'l.) A preliminary study was carried out to compare performance of an esti-

mator with e=2 with that of an estimator with f=10. Although the higher

identification frequency estimator increased the computational load five

t im--, it did not present any clear-out sup(riority comparod with the lower

fre-juency -,stimator. For C=10 and the sample time asistuned in this work,

; estimat(;r would have about 2.4 seconds for each ';,lato ea:;h cycl( . This

r,'j,r-sunts a re.alistic computational time allotment. Being a recursive

technioue., the MVE has a very :-mall d1,ynamic data storage u ro(t.

At .ach r, cursive step, the algorithm need!; two con;cuut ire m(,asurm(.nt ;

'!ct. r.- 'k and z' , the recent rudder angle ' , the last parameter esti-
- -k k-

mrt( _ and the last estimate error covariance matrix P This in-

JIA LiA I i Jmea 1 urImrnt

AA
k f I timat e

Fik-r $ 7 quence (Il , )

Figur,, .7. Timing .Y,,ieonce for Minimumn 'arlanee 1,r am.t V t :Imat (r
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formation requires only 34 storage locations. The entire algorithm could

be implemented with less than 100 storage locations.

The Minimum Variance parameter estimation algorithm is derived for a

discrete time system of equations. The continuous ship system equations

from Section 4.1; i.e.,

x = Fx + G6' + !'w , (72)

must therefore be transformed into a system of difference equations. These

differential equations can be represented by,

-- -x -
-k+l -k = Fx 4 G6' + Fw

At -k k -k'

or,

= [T + AtFx k + AtG6 k + At k (79)

If we let F' = I + AtF, G' = AtG, and F" AtF, the dynamics of the ship

can then be represented by the difference equations,

=F'x + G'6' + P'w k (80)x k+l -k k -k

or,

1 At 0 0 0 0

0 +Atf t22 23 (81

t tf l+Atf33 0 35 31 t32

L - l t 0 -At LJk -Ln'J k _j°L 0 0 k

The disturbances are now represented by two discrete stochastic sequences

N' k' and {Y' k} which we assume to be independent. The yi, coeffif-i.nt 3

are given constant, assumed values y.. as in Section 4. All four states
13

are assumed to be available for measurement; i.e.,

z. = x k +  v' , (82)-k -k -k

where the noise fv'k } is a Gaussian white sequence with covariance matrix H.

Y_ ,-wing an approach similar to that used in Section 3.3, the parameter:-

can :.- .-.eed as Brownian motion processes. In thi:; discrete formulation,

th. :.ira:.-ter :'ector, eq. (78), if; therefore modeled as,
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+ ('k-8' (83)

where , is a Gaussian white sequenc " with diffusion coefficient matrix .-k

The parameter defines tho frequency of identification. It is requir that

e- t"hroughout this work. The diffusion coefficients; can be selected with

eaa( :ising the properties of the Brownian moti.)n 1roce,s as leveloped in

Section -. 3.

In order to estimate the unknown parameters in F' and G', it is necessary

to rearrange eq. (81) so that xk+1 is ('xpressed explicitly in terms of Lk

and s k , tne unknown and known parameter vectors, respectively. In this par-

tic;iar -roblem, the known parameter vector is simply Sk=[lI . The revised
-k

-- equations become,

Xk+l =k Pk +Dk k -k

-r --- 'If

X k+l,C 0 2

tx ,tx .t3' 0 ) 3ix. k,2 k, k 2
('.t f2
S0 'tx tx

k1,3 k,2 k k
k0 f- 0 4 0 3

f 33

L 35
xk l + .t k, "  < l

k,222
4 <k,i t 3'2' V (R4)

X + At (x -x ) k
k,4 Xk,1 ,L

w. k ,'xkx , ,] . Note that 'k ;ind C are matrix funr~tiorc

~k,l k,2 k,-xk,.4 k
,,f: :. Substituting x k  - v' into c' anrd c), t he-(- mat r i,:r, can 1- ( d(,-

-k - k Y k
r'en ~O-Ld iito determini.,tic and stoc aSti( c(5T, ,n t whi-li dopnd on z' and

k
V.k 'a ' y; i. . V

(:,: (z' W C(v' )-k-k k k

wh we ' , ' ' ,

k,

.~~ ... .....



and,

V Fv' v0 0 0 0 0

C=:t k, 2  k, 3  (86)

0 0 0 Vk,2 Vk,3 0

0 0 0 0 0 0

and ise the same notation for z' and v' as used for x above. Similarly,
-k -k--

we can write,
A% V

D(x D(z' D(v' ) =-k -k -k k k

where,

Z. + At z'
k,l k,2

-k k,2 (87)

Z'k, 3

z k,4 + At(z k  - z' )k,4,l k,3

and,

v' Atv
k,l k,2

v.
V k,2

Dk  vo k, 3 (88)
Atv' - v' j

L V.k,4 + t(V 'k, 1 -k, 3

Using these definitions, eq. (84) can he rewritten as,

A v A V

-k' = (Ck C + (Dk - Dk)S 4 j"w
k+l -k+l - k k- k -k

or,
A A V/ V

-k +1 k k C - Ck +kk -Vk41 + "w k

The left-hand side of this equation can be defined a:i a ;'L(, me..;u,,m,.t

vector, i.e. ,

zk+l :k+ 1  D ks k

Equations (89) then becomes,

- k .l s- k -kEk - 'k--k +-"k*l + -'"wk

Notice from its definition that z can hr, directl' calculated ir')m z'k41

and z'k Therefore, we can treat th, psudomeasurement a, a form of obsr-

- ) 3-

... ....................................... . ..... ........................... .I ,:.:



v

vation which is corrupted by the multi pI icat ivf, rin ,. t ,ir klik Al I t
V

additive noise terms v k+ and Dk1 k Shifting the indiex .-: one :etcj , 1,.ic', -

ward, eq. ('1) becomes,

A V V
- k  4 V' + w ,

k ^k-1 k- -[ "k- k-I k-I k -k-1

where wu have used 1-k-t £ k- because (q. (83) approximates the .tecI.a.-

tic process p (t) } by the stochastic step function : L)k1

We can now define the innovation vcto.r at time k a:;,

=z Ez k Z 1

_k -k -k k-i '

where the second term on the right-hand side is tie conditional expction

zf z' with respect to the whole measuremont history; i
- k

- '' z' Z. . . . .z

k-i %- ' -i ' -2 . . .- k i

Noting that,

. -C D S 4- w + V,
K k- i Lk- k-i k-i k-i -k

.- k-I k-fC k-I k-i

, i7 turhance- W, w art- r, .:,tr t o ed f zero-mean 1'roct,2;,. ThOl-k

' 'k -- Lk-t' k-i k-I

' - c

-k k k-l k-C 
(94)

t -i t itij ,,,: . (92) into oq. (94) y'iolds,

C V -:,- 4 W
I'"-i k-' k-I k- :-- k-l -- - -kk-I

.i w , introdui , the ,rtror ie, : i 17-, 1 (-,:;t imat t i

Lk  V it - k '

thA, < , -, V ,

k_1. k-1 -k I



Using an approach parallel to the Kalman filter derivation, we can

assume that the parameter estimate Pk can be given by the following ;cheme,

A A IEk = Pk-e + Kk I k ()

where the gain matrix Kk is to be established. Subtracting eq. (83) from

eq. '96), we get,

P-k P k-e k -Ik k-(

If we multiply eq. (97) by its transpose, we get,

T T T T T - T T IT

P-kP-k Ek-e- k- '- k Kk~J Kk. + k- e k 4 (98)eI~k+k-E-T T T T -T- k_fk Kk K kkk 4 -k_ k_ -ak-tPk-e (98)

Defining conditional expections as follows:

F z I E k Jk - I

-T

P -P kE[i +k +
z -k

the conditional expectation of both sides of eq. (98) with respect to tho

whole measurement history Z k_1 yields,

P k P k - +  K E z [ Ik--T-+k ] I T  F , T T K k E z ( I ' T

k -k-C k z -k-- k k z ik-f -k K _fZ

T T T TT
E I I 1K - K, ~ I - E -l [ In) cT)z -k -ef-- -z 1k4-f z P-k-f-k-f z -k - k-f~

49
Cuong has evaluated the various conditional expectations on the right-

hand side of eq. (99) for the case when eCI. If these results are su[-

stituted into eq. (99), we arrive at the following expression for the

propogation of the estimate error covariance,

A AT T A AT T
Pk = P k-f + D - Kk Ck-1 Pk-f - Pk-f Ck1 Kk + Kk[Ck- 1 'k-( Ck-1 + Rej'k - l l k

( 100)

where we define an er;uivl,,nt n(,i2. cov,irianco matrix P as,

eq (101)
Req, k-l -k-1

--w i
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and where R is the measurement noise covariance matrix and,

A v T VT
U k-i Ez[Ck- 1 P k-Pk- Ck_ , weighted covariance matrix,

T VT

z k- Dk-k-l k-I

T= E [Wk I kw ] , disturbance covariance matrix.
rw z -- k-i

Elements of these matrices will be developed further below. Minimiza-

tion of the trace of the estimate error covariance P will produce a minimum

variance estimate of the parameters Pk " Stationary conditions for the mini-

mization of the trace of P are obtained by setting all derivatives of eq.
k

(100) with respect to the elements of Kk equal to zero; i.e.,

AT ^T
2K k[Ck-I Pk-e Ck-I + Req,k-I ]- 2Pk_e Ck-1 = 0

Iearranging this, we get the following expression for the filter gain:

, T ^^T

P' : - Ck- Pk- Ck- +  R (102)I AT eq, k- (102)

i (122) to simplify eq. (100), w. arrive at the following form of

t:s rrr-r rov;iriance matrix,
A

"t~~~ k-'Ck -1i k- t'

i known i-aramete rs are time-invariant, the [,raut .t r modeI iifFus iuen

f -nfi cint : is zero in this expression.

The 'A matrix is defined below eq. (i(i) as a conn'.) i na) expecta t i n
V V

in'volving the product DklS~ which in this ca:e is just ) k-i gVn i)"

(Pe'). E1 . (WR) can be used in th, definiti-n of R to ie] I

S 2 2

22 2

L ix P i;, th,rr fore, a1 connmtant rintrix which d, .,t T ,;t i r1',l :i , t li

-1..,



2
measurement noise variances a. and sampling time At. The disturbance power

T
matrix P'Q F' can be developed next using the definition of n below eq.

w
(101). We have assumed that {N' I and [Y' ) are independent stocha-t -

k k
processes with zero means. We can assume that these" disturbances can be

modeled as white noise sequences. The Qw matrix then becomes,

T 112w = E, (W klk_ 1 7t q

0 wAt

where q; and q' are the spectral densities of the corresponding continuousy

white noise disturbances N' and Y'. Using this result the disturbance

power matrix becomes,

0 0 0 0

0 (_, Y2 + ,j (qY2 q
(NN22131 21 0qYAt232 (105)['Q FIT = At 0 (qNY2 1 qY¥.22 ('Y 2 Y3  Y222

0 (qN Y2 1Y31  q y 2 2y 32) (qy31 + qy 0 1320

0 0 0 0

The disturbance power matrix is, therefore, also a constant matrix.

The weighted covariance matrix U is defined below eq. (101) as a
k-l I

conditional expectation involving the vector Ckl P- k- which is given by,

0

V At (Vkl 2 Pk- ,1 + Vk-l, 3 Pk-Z,2 )
Ck-i Pk-e

At (' p-l,3 pk-C(Vk- l - -A t ( 1 , 2 P k -t , 4 "+  v ' , k -, 5 )

0

The presence of unknown parameters pk-t,i within this matrix presents com-

putational difficulties. These parameters are known to be within a

known finite range so for the purposes of evaluating U it is reasonable

to assume that the parameters are Gaussian random variables with known means

and variances; i.e.,

E [Pi] = p.

2 2
E[(p i- i ,2 .... 6.
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The mean pi can be taken as the mean of the probable range of the parameter

and i,. might be taken as half of the probable range of the parameter.

Assuming that the various components of the measurement noise are orthogonal,

the weighted covariance matrix then be)comes,

0 2 0

2 022 23
k-23 a 33

where,

2 2 -2 2 2 -2
a 2 2  [-2 + p  ) + P . '

2 3 2

=-[2--
a23 P 1 P 4 + 3 pP 5 ]

2 2 -2 2 2
33 K + P) ) + t3 ( , + )

The weighted covariance matrix is, therefore, also a consta; L :r t 1- Ukl= U

wai::- c be zalctiate(d in advance,. Thr, entire equivalent Me- _..¢ment noise

cavarlazce can therefore, be calculated in advance. If the unknown parameters

are time-invariant the variances ti arc zero in eq. (106). The U and R

'njtricez mi-rht then be updated petiodicaliy u:;ing the latest estimates p. in

Li o t "issumed mean Vll't: s

Frt.)b an-1 Kal:fman not, I 'zhiit I ubstantial bia.s was observed to al a.,,r

it, the naramuter, estimate; .sing their time-invariant parameters MVE algo-

rithm. Th' biases wer,, ausd 0: the, dependence .F the additive and mul-

ipicative nois;, t rmm.; in eq. ( 1). Yhey developed a "bia:- reduction"

s:>n' t(, rkduce or eliminate this bias. We will follow their basic approach

aero to develop an bias error c(,rrection procedure for the, general time-

vrvinq i;arameters case. Pustmultiplyiip both sides of eq. (.1() by the ex-

e: SlOT inside the bracket, it become ,;,

k-I k-' k-I K k k-1 k- k-1

Rearrangi nq thi. e:xpr("-;s ion, we arrt iv at

-i '. k- k 0 1 , _k-t k-

'4, nir I., H emBR7i "D nil t mill I t hi



AT -1
result into eq. (103) and then postmultiply by Ckl Req,k-l to give,

AT -iKk = [Pk- l Ck- Reqk- (108)
k (Pk flCk-i eq..k-l

Using eq. (94) and eq. (108) in eq. (96) yields,

A A AT -T -1
k = Ek- k + Pk Ck1Reqk-i R  k -Cki R I . (109)

In order to reduce the bias in estimating p, an extra term can be added to

the above expression. This term should contain and P -¢ and so we can
k soweca

choose,

[P C;k Gk-i Pk-f

where the gain matrix Gk-i is yet to be determined. Equation (109) then

becomes,

A A AT -1 ^ AT -A A A
2 k k-f + [Pk k [Ck-i Req,k-lZk -iReq k-lCk-iF-ke + Gk-lk_]

(110)

We can now take the expectation of both sides of eq. (110) and impose the

additional condition that:

lim E [] lir E[n

k - k-

This assumes that after initial transients die out and the estimator is

tracking a change in parameters, the parameter change between the parameter

estimates is small. If the parameters are time-invariant this condition

is exact. With time-varying parameters, the effectiveness of this assump-

tion must be evaluated by simulation. Noting that [P - 1] is always nonzero,k

the expectation of quantities inside the bracket in eq. (110) must be zero;

i.e.,

^T R-I - AT -1 A A

Ck-i eq,k-i -k - k-i Req,k-l C k-i - + G k-l P k-t 0. (111)

Equation (111) can now be used to establish the gain Gkl . The expres-

sion, A V
Ck_ =Ck_ - Ck_
Ck-l Ck-i k-i

can be used in eq. (92) and this can be substituted into eq. (ill).
A V A

ex si 1TshI - Ck k 4 - l can he used to .I iminat:( 111id 1
k-I k-i k--
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A
transpose from the terms involving pkfand pk " Utilizing the fact that

V V I A A V A
C k_ and Ck , _ l and C k_, v' and C k_, Ck_ 1 and Wk I , and Ck_ and pk-t

are orthogonal , the expectation in eq. (ii) then reduces to,

Er .EC~T~ l~ T -l ]E~ T V'
eq, k k tk-1 eqx- k kL k-ie~- -

- Gki1.]

For an estimate to be unbiased, it is necessary that,

urn E[2-k- = lrn E[P-k-
k-K k-o

which will be true if,
VT -1 V

Sk-. = E[CkI Req,kiC kl 1 (112)

This term is a generalized measure of noise and disturbance power.

The matrix Gkl can be developed explicitly for this problem using the
V- 1expressions for Ck_1 and Re, -= [t ij The expectation term by term
k- eq k-l i

yields,
" 2 00 to 2

222 2 23o2 2
0 t220 3  0 t23a 3  0

0 0 0 0 0 0 (113)

k- = . ) 2 2
- 32 12  0 0 t33o 2  0 0

3 2 2 0 0 2t32 3  t33 3  0

t0 0 0 0 0

The matrix G is thus a constant matrix which can be calculated in advance
k-i-1 2

knowing the elements of R and the measurement noise variances a.eq

The final parameter estimate equation is obtained by adding the bias error

correction term to eq. (96) giving,

A

Pk k-e + - + [P k- ] Gk-i Pk-Z (114)

This completes the derivation of the Minimum Variance parameter estimator.

The comnlete algorithm is summarized below.

-80-
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5.2 Algorithm Summary

Since the derivation of the Minimum Variance parameter estimator has

been long and complicated, it is useful at this point to present an algo-

rithmic summary of a typical recursive cycle. The equivalent noise spectral

density . can be calculated and stored in advance using eqs. (101), (104),eq

(105), and (106). If the unknown parameters are time-invariant, the variances

a . are zero in eq. (106). Likewise, the generalized noise power matrix Gk.l1

can be calculated and stored in advance using eq. (113). Let k be the value

of the time index at the next parameter estimate. The parameter estimation
A

cycle is provided with the previous parameter estimate Pk-t and the current

estimate error covariance matrix Pk-t which were stored from the previous

zycle. The recursive estimation cycle proceeds as follows:

1. At t'=k-l, a set of measurements z'k_ 1 and the rudder angle

k-i are sampled;
A A

2. These data are used to calculate Ck-1 and Dk-1 using eqs. (85) and

(87), respectively;

3. At t=k, a second set of measurements z'k is sampled;

4. The pseudomeasurement vector z k' is calculated from its definition;

i.e., IV

-k -'k - k-I -k-i (90)

5. The filter gain matrix Kk is calculated using eq. (102); i.e.,

AT A AT -1
= Pk-t Ck-i [Ck-i Pk-e Ck-i + Req 1 (102)

6. The updated error covariance matrix Pk is calculated using eq. (103);
i.e.,

Pk = k-C + 0 - K Ck- Pk- (103

where diffusion coefficient matrix 0 is zero in the time-invariant parameters

case;

7. The innovation vector is calculated using eq. (94); i.e.,

I k  !-k- Czk-i Pk-t (94)

8. The new parameter estimate pk is calculated using eq. (114); i.e.,

-A

2k k - t+ Kk + (P ) G k-l Pk t (114)
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and again 0 is zero in the time-invariant parameters case.

This completes one parameter estimation cycle of the Minimum Variance

Parameter estimator. Compared with the the Weighted Least-Squares method,

it is very elegant and powerful. It is potentially capable of estimating

time-varying parameters in real time. Recalling that the computational

requirertent for the WLS method was quite large, the load imposed by the

MVE would be small by comparison. As developed here, the MVE cannot,

however, accommodate bias disturbances which can be handled by the WLS

approach. We evaluate the performance by the MVE in the next section.

5.3. Time-Invariant Parameters Performance

In this section, we evaluate the performance of the MVE ship parameter

estimator when the parameters are time-invariant. Simulations were conducted

with and without zero mean disturbances. From Section 4.2 we would expect

that for the MVE to be effective with disturbances, the system must be persis-

tently excited by an input signal which is independent of the disturbances.

Simulations have confirmed this requirement. We therefore continue here to

use alt,rnate periods of (1) open-loop control using a dither signal with the

controller turned off and (2) closed-loop control using the controller. We

continue to use a square wave input rudder command 6' of 0.5 radian ampli-
c

tude and (.5 ship length period for the dither signal in this section.

The need to excite the system can be illustrated further by considering

equations (85), (87),(90), (94),(102), and (114). The MVE parameter estimator

eq. (114) shows that the estimator improves its estimates primarily through

the term kIk . The estimator gain eq. (102) shows that the gain Kk is directly
AT

proportional to Ckl. The innovation vector Ik is shown in eqs. (94) and (90)
A

to depend upon Ck-l, Dk-l, and the measurements Z' k" From their definitions
A

in eqs. (85) and (87), Ck- 1 and D l, respectively, depend directly up)n the

measurements z k-. As a result, if the ship is closely controlled along the

desired path so that the measurements tend to zero both K and Ik tend to zero

and the estimator cannot improve its estimates. For the parameter estimator

to be effective, the measurements must contain non-zero states which are large

compared to the measurement noise levels. Periods of open-loop control using

a dither signal are therefore needed.
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To complete the design of the MVE parameter estimator for time-invariant

parameters for the Tokyo Maru a number of design choices must be made to define

the equivalent noise covariance matrix Req defined by eq. (101), define the

generalized noise power matrix G defined by eq.(113), and to initialize the

error covariance matrix Pk which is propogated in accordance with eq. (103).

Recall that with time-invariant parameters, the diffusion coefficient matrix P

associated with the parameter model eq. (83) is zero. We used the reference

measurement noise level from Table 9 to establish the measurement noise

covariances needed to calculate the matrices R,B,U, and G. The discrete

measurement noise standard deviations a! in Table 9 were squared to form the
2 J

noise variances a. needed in the diagonal measurement noise covariance]
matrix R, the B *atrix defined in eq.(104), the weighted covariance matrix

U k_=U defined in eq. (106), and the generalized noise power matrix G k_=G

defined in eq. (113). With time-invariant parameters, the variances a . in
1

the weighted covariance matrix U are zero. To complete the definition of U,

we chose the "mean" values of the parameters needed in eq. (106) to be near

the midpoint of the permissible ranges of the parameters defined in Table 10;

i.e.,

f2 2 : pl
= -1.750,

f2 3: P2
= 6.250,

f32 : P4
=  0.175,

f33: p5
= -0.785.

To complete the definition of the equivalent noise covariance matrix

R eq, the disturbance power matrix 'Qw rT defined by eq. (105) must be es-

tablished. The Yij coefficients in eq. (105) were assigned assumed, constant

values for H/T=-l.89 from Table 2. The remaining required quantities are

q; and q , the assumed spectral densities for the continuous white noise

disturbances N'and Y', respectively. The choice of these quantities has

a major impact on the effectiveness of the MVE parameter estimator. If

these quantities are selected to be too large, the disturbance power matrix

tends to be "large" and the equivalent noise covariance matrix R alsoeq
tends to be "large". It can be seen in eq. (108) that the parameter estimator

gain matrix Kk is proportional to R-  If R is "large", the estimator gaineq eq

matrix is "small" and the parameter estimator will change its estimates very

slowly. This is true even when the innovation vector I k contains significant
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information - The speed of response of the parameter estimator is, therefore,

directly controlled by the choice of q and q'. We initially assumed these

quantities to have the values given in eqs. (67) and (68), respectively.

These values are slightly larger than the spectral densities derived from

the passing ship disturbance shown in Fig. 3 and given in eqs. (53) and (54).
t49

Cuong has shown that using these values the MVE ship parameter estimator

response is far too slow to be of any value in an adaptive ship path control

application. We therefore chose these quantities to be based upon approxi-

mately 0.1 times the passing ship disturbance shown in Fig. 3, i.e.,

q1 = 2.00 x 10~I 0  (115)

'q = 1.25 x 10-9  (116)

These assumed disturbance spectral densities produce a MVE parameter estimator

which responds at an acceptable rate. These assumptions complete the defini-

tion of the disturbance power matrix and therefore also the equivalent noise

covariance matrix R and the generalized noise power matrix G.
eq

The final quantity to be selected is the initial estimate error covariance

P . This assumption is not critical to the effectiveness of the MVE estimator.o

It affects the initial rate of convergence somewhat but its effect dies out

fairly fast. To obtain an initial P it is reasonable to assume that all ini-0

tial parameter errors are independent Gaussian random variables with zero

means. Hence, all off-diagonal elements of P are zero. The diagonal terms,0

which are the error variances, remain to be chosen. They can be selected

based upon the expected range of each parameter. In the simulations, we

used the following initial estimate error covariance which assumes that the

error covariances are the square of the difference between the respective para-

meter values at H/T' and H/T=l.89 shown in Table 2.

.03452 0 0 0 0 0

0 6.640 0 0 0 0

0 0 .02568 0 0 0P . (117)
0 0 0 .02047 0 0

0 0 0 0 .01185 0

0 0 0 0 0 .00003091
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To evaluate the performance of the MVE parameter estimator with time-

invariant parameters, we simulated the Tokyo Maru under the control of an

adaptive path controller using the MVE parameter estimator defined above.

The simulations presented here represent a type of startup condition for the

controller. The Kalman filter ship model, path controller gains C, Kalman

filter gains K, and the parameter estimator were all nitialized for deep

water ship characteristics. The ship and Kalman filter were given zero

initial conditions X==0. At the start of the simulations, the depth-to-draft

ratio was abruptly changed to H/T=1.89 or viewed differently the adaptive

path controller was turned on with the depth-to-draft ratio H/T=1.89. The

depth-to-draft ratio was then held constant to produce time-invariant ship

characteristics. The reference measurement noise from Table 9 was utilized.

The dither signal was a square wave rudder command 6' of 0.5 radian amplitude
c

and 0.5 ship length period. The dither signal was utilized only for the first

2.5 ship lengths of each 6.25 ship lengths. This corresponds to an LW-2.5

ship length data window and LU=6.25 ship length update period for the WLS para-

meter estimator. The MVE parameter estimator frequency was chosen as 10 sample

times or about 2.4 seconds.

The Tokyo Maru was simulated under the control of the MVE parameter

estimator adaptive path controller while being subject to (1) no external

disturbances, (2) the passing ship disturbance shown in Fig. 3 with the ship

* passing beam-to-beam at t'=7, and (3) fairly small, continuous white noise
-5 -5disturbances with cN= 2x10 and oy=5xl0 . The simulation conditions and

NY
the approximate ship path for the simulation with the passing ship dis-

turbanue are summarized in Fig. 28. The ship reached a maximum offset of

n'=.01738 or about one beam at t'=3.8. Since the simulation represents a

startup transient for the controller, the effect of the subsequent dither

periods is generally less. The parameter estimate results for the first

10 ship lengths of the three simulations are summarized in Table 16. Since

there are 200 estimates for each parameter in the 10 shill lenqths, Tabit 10

presents only the initial guess and the minimum, maximum, mean, and final

values of the estimates for each parameter. The RMS error in each estimate,
200i~e. ( 2 1/2

RMS(pi) 1 (i k (18)k-l
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iparameter path

estimation' control

dither signal ampl. 0.5 rad. ,period=0.5

passing ship t-7.0

-o.2

shippa th

0 1 2 3 4 5 6 7 8 9 10

nondimensional time scale ship length

Bottom prof ile H/T = 1.89

Initial conditions at H/T =CO

Figure 28. Simulation Conditions and Approximate Ship Path -- Constant
Bottom Example.

is also shown as a basis for evaluating the effect of the disturbances on

the estimator performance. Recall that the control loop requires effective

e3timates of only the two most sensitive parameters f23 and f 25 The esti-

miates of these two parameters and f32 are good. The other parameter estimates

are slow and generally ineffective. The disturbances do not significantly

degrade the performance and in some cases the estimates improve due to the

additional ship motion.
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The estimates of parameters f23 ,f25 , and f32 from the simulation with the

passing ship disturbance are shown in Figures 29, 30, and 31, respectively.

The true values are shown by constant, dashed lines. The simulation results

with the reference noise level from Table 9 are shown as the solid lines. The

simulation results with 0.001 times of the reference noise level are sketched

approximately as long, broken dashed lines in Figures 29, 30, and 31 for refer-

ence. The estimate of parameter f shown in Fig. 29 converges to near its
23

true value in about 3 ship lengths. The estimate of parameter f2 5 shown in

Fig. 30 converges to near its true value in only one ship length. After about

t'=4 it varies about the low noise estimate which appears to have a small bias

error. These estimates appear to be more than acceptable for use by an adap-

tive path controller. The estimate of parameter f32 shown in Fig. 31 is

slower to converge and shows two jumps at the end of each dither period. The

effect of the dither signal can be seen fairly clearly in the low noise esti-

mates in Figures 29, 30, and 31. The additional ship motion produced by the

passing ship disturbance which acts from about 6<t'<8 appears to help the

parameter estimates move closer to their true value.

dither siqnal
J I I I I.I.I I. I I 1 1 1 1

j'N

,i .7 true

= _ '" -n . .... value

4 __

reference measurement noise

0.001 * reference noise

L O *AA 6 7A W* 6
TIME

Figure 29. Estimate of f2 3 by MVE Parameter Estimator - Constant Bottom with

Passing Ship Example.

Ii- 8I -



N I true

- -- -- - value

Fiur 3. stmae f 32 byMV Preer Estimato ostBttmwt

-79

11- -E ------ L to 2A 3A 4 SA A 7A &A'7

STIM



The simulations presented in this section show that the MVE ship

parameter estimator can be effective in estimating the two parameters

needed by an adaptive path controller, f 23and f2 5 ' when these parameters

are constant. This performance does not deteriorate with significant

zero-mean disturbances. The performance with time-varying parameters is

evaluated in the next section.

5.4 Time-Varying Parameters Performance

In this section, we evaluate the performance of the MVE ship para-

meter estimator when the parameters are time-varying. As in Section 4.3.1,

we use the water depth as the independent variable which defines the changing

parameters. We simulated the Tokyo Maru under the control of an adaptive path

controller using the MVE parameter estimator while sailing over two bottom

configurations. The controller design was identical to that developed for

the Tokyo Maru in the previous section except that it was extended to ac-

commodate the time-varying parameters. Two design changes are necessary.
2

First, non-zero parameter variances a. must be utilized when the weighted

covariance matrix Uk_ is calculated in accordance with eq. (106). We

utilized the square of half the range of each parameter in Table 2 as the

assumed variance. Finally, a non-zero, diffusion coefficient matrix D

must be included in the parameter estimator equation, eq. (114), and in the

estimate error covariance propogation equation, eq. (103). This diagonal

matrix is composed of the diffusion coefficients for the Brownian motion

processes which were used to model the parameters in eq. (83).

The diffusion coefficient matrix P can be established using the

properties of the Brownian motion process developed in Section 3.3. There

we showed that the power spectral density of the continuous white noise in

the Brownian motion models for the disturbances could be approximated by,

q = tS2  (66)

where S is the expected rate or change or slope of the continuous process

being modeled and At is the integration stepsize used in the Euler integra-

tion discretization of the continuous process. Now in the derivation of the

MVE parameter estimator we modeled the parameters by discrete models, eq.(83),
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where the discrete time step is the estimation period or tAt. The element

4ii if the diffusion coefficient matrix is the variance of the white sequence

;.n eq. (83) so using eq. (64) we have,
1q q

or using eq. (66), (119)

We approximated the ii using eq. (119) by assuming that the parameters could

diffuse the difference between their values at H/T = 1.89 and H/T = in

Table 2 in the nondimensional time of about 1.5 ship length. The results

are summarized in Table 17 for = 10.

difference slope S
! -3

l= f22  0.196 0.1314 1.726 x 10

i -1

P2= f2 3  2.716 1.8218 3.319 x 10

-3
P 3= f25  0.169 0.1133 1.284 x 10

P4= f32 0.151 0.1011 1.023 x l0-

P5= f33  0.114 0.0770 5.924 x 10
- 4

P6 0.00586 0.00393 1.545 x 10-6

Table 17. Design Diffusion Coefficient Matrix

We simulated the Tokyo Maru under control of an adaptive path controller

using the MVE parameter estimator while sailing over a rising bottom and a

falling bottom. These simulations were performed (1) without external distur-

bances and (2) with the passing ship disturbance shown in Fig. 3 with the

ship passing beam-to-beam at t'=7. The simulations were begun with zero

initial conditions; i.e., x==-0. The dither signal had a 0.5 rad. magnitude

and 0.5 ship length period. The periods of open-loop control using the

dither signal and closed-loop control using the path controller were the

same as used in the previous section. The reference measurement noise level

from Table 9 was utilized. For these simulations, the initial parameter

estimates were assumed known and, therefore, the initial estimate error

covariance p was taken as zero in lieu of using eq.(117).
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For the rising bottom example, the bottom was assumed to start at a

depth-to-draft ratio H/T=10.0 (corresponding to deep water characteristics).

7he depth then decreased one draft per ship length until t'=8.7 at which

noint it reached H/T=l.30 and remained constant. This corresponds to an

upward bottom slope of 5.5 percent. The simulation conditions and the

approximate ship path for the simulation with the passing ship disturbance

are summarized in Fig. 32. Even though the bottom was smoothly rising,

the parameter profiles were more irregular. The resulting parameter his-

tories show two regimes; i.e.,

a slowly varying region from H/T=10.0 to 2.5;

a quickly varying region from H/T=2.5 to 1.30.

This example was, therefore, very demanding of the MVE parameter estimator.

If the MVE is designed for the more slowly varying parameters, the estimator

is too slow to track the variation in the second phase. On the other hand,

if it is designed for large parameter variations, its estimates are more

sensitive to noise and random disturbances. The MVE design studied here,

as reflected in the parameter variation slopes used to obtain D in Table 17

is more appropriate for the parameter variation in the first phase of this

example.

In the rising bottom example, the parameter estimator was initialized

with the correct deep water parameters. The simulation was performed for

15 ship lengths. The results of the first 10 ship lengths of the two rising

bottom simulations are summarized in the upper half of Table 18. The table

:3hows the initial value, final value, and true final value for each para-

meter. The RMS error in each estimate calculated using eq. (118) is also

shown as a basis for evaluating the effect of the passing ship disturbance

on the estimator performance. Again recall that the control loop requires

effective estimates of only the two most sensitive parameters, f23 and f25

In general, the presence of the passing ship disturbance helps to improve

the accuracy of most parameter estimates. This behavior can be explained

by noting that the ships pass beam-to-beam at t'=7 so the disturbance,

occurring mostly during the duration of the second dither signal, increased

the ship motion. It, therefore, increased the information content in the

innovation vector. It can be seen from these simulations that f3 3 and f3 5

are insensitive parameters; their estimates tend to stay near the initial

values. Parameter f22 is also fairly insensitive. Parameter f32 is slightly
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and f are the most identifiable parameters
more sensitive. Parameters f23  25

as expected form the sensitivity study.

i pari path

es i Control
I Ir '

qfl~fml dlf Lfff
dither signal: ampl.=0.5 rad., period = 0.5

passing ship t=7ZO
0.1 . _.

-0.1 '

0 2 4 6 8 10 12 14
I I •

nondimensional time scale ship length

H/T 1.30

~Bottom profile

Figure 32. Simulation Conditions and Approximate Ship Path - Rising Bottom
Example.

A A

The paths of the parameter estimates f 23and f25 produced by the MVE

parameter estimator are shown as solid lines in Fig. 33 and Fig. 34, respec-

tively, for all 15 ship lengths of the rising bottom simulation with the

passing ship disturbance. The correct parameter values are shown as dashed

lines on these figures. The assumed parameter variation slopes used to estab-

lished the diffusion coefficient matrix 4 in Table 17 are also shown as solid

straight lines for reference. The very rapid parameter change at about
A A

t'=7.5 is clearly seen. The estimates f2 3 and f2 5 follow the true parameter

values fairly well during the slowly varying portion of the simulation. The
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effect of the passing ship disturbance can be seen beginning at about t'=5.5.

The passing ship disturbance ends at t'=8.5. The MVE is unable to track the

rapid rise in parameters beginning at t'=7.5. It is able to follow f23 well

up to the very rapid change which begins at about t'=8.5. At this point, the

parameter change becomes more rapid and the dither signal is stopped.

The estimate of f is worse in this period. The parameter estimator was
25

still reacting to the passing ship when the rapid change in the parameters

began to occur and required a few ship lengths to catch up. Recall that the

ship is very stable at the final water depth and, therefore, the dither sig-

nal excites less ship motion and the parameters are specially hard to estimate

in the final condition.

n r!

-- "- ' (VV- true

V - -- -- - value

I']

TIME

Figure 33. Estimate of f23 by MVE Parameter Estimator -- Rising Bottom with

Passing Ship Example
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For the falling bottom example, the water depth was assumed to in-

crease such that the depth-to-draft ratio increased linearly from H/T=1.30

to H/T-2.50 in 10 ship lengths. This is a much less drastic change in

ship characteristics than present in the rising bottom example. The simu-

lation conditions and the approximate ship path for the simulation with the

passing ship disturbance are summarized in Fig. 35. The parameter estimator

was initialized with the correct ship parameters and the simulation was run

for the 10 ship lengths. The results of the two falling bottom simulations

are summarized in the lower half of Table 18. In general, the RMS errors

are greater with the passing ship disturbance. The final value of the

parameter path

estmation control

I I

qLFLfU1JL J-L1111T

dither signal ampl.= 0.5 rad. ,period =0.5

passing ship t'=7.0

shi _#t h

0 1 2 3 4 5 6 7 8 9 10

nondimensional time scale ship length

Bottom profile

H 2.50
- /T 1.30

Figure 35. Simulation Conditions and Approximate Ship Path - Falling
Bottom Example.
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estimate of f23 is, however, closer the true value with the disturbance.

As observed before, f2 3 and f25 are the needed and the most identifiable

parameters.

A

The paths of the parameter estimates f23 and f25 produced by the MVE

parameter estimator are shown as solid lines in Fig. 36 and Fig. 37, respec-

tively, for the falling bottom simulation with the passing ship disturbance.

The correct parameter values are shown as dashed lines on these figures.

The assumed parameter variation slopes used to establish the diffusion coef-

ficient matrix D in Table 17 are also shown as solid straight lines for

reference. The estimates follow the true values fairly well. At the begin-

ning of the simulation, the ship is so stable that the dither signal has

little effect. As a result there is little ship motion and very little in-

formation available to the parameter estimator. The estimates tend to stay

near their initial values. After about 2 to 3 ship lengths, the ship motion
AA

becomes large enough that the estimates f23 and f25 start tracking the true

parameter profiles. The effect of the passing ship disturbance, which is

felt from 5.5<t'<8.5, is clearly evident.

In general, these simulations show that a MVE ship parameter estimator

can be effective in estimating time-varying ship characteristics. The dif-

fusion coefficient matrix 1' selection must, however, be consistent with the rate

of parameter change encountered by the ship. The estimator performance de-

grades durinq periods of external disturbances, but in the long run the ship

motion caused by the disturbances can result in improved parameter estimates.

5.5 Parameter Identifiability and Measurement Importance

A useful by-product of the study of the MVE ship parameter estimator

is a rough indication of the identifiability of each parameter and the rela-

tive importance of the various measurements to the estimation of the unknown

parameters. The numerical valuos of the optimal parameter gain matrix Kk

give this information. Th, princi[pal patt f the parameter vstimatinq !;cheme

is given by eq. (96); i.e.,

Pk'= Pk- + Kk' lk'' (96)

where,
-i -i T

4' 203 4 k'

L
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At any time step k', each element k of the gain matrix Kka represents an
mn

optimal weighting factor on the innovation i with re:ipect to the parameter~n
estimate p. Furthermore, the innovation i relates to the measurement of

.' ,i to the measurement of r', i to the measurement of ', and i to the
2 34

measurement of n'. Hence, the maqnitudes of k,km,k3, and k give an
mlm m3' m4

indication of the relative importance of these four measurements to the esti-

mate Pm"

Since the various measurements have different magnitude scales, the

most revealing form of Kk, is to "normalize" each column of the gain matrix

by the •xisting magnitude of the associated measurement. Likewise, since

earrh unknown parameter has its own magnitude scale we can further "normalize"

each row of the gain matrix by the existing magnitude of the associated para-

meter. A typical result is shown in Table 19. In general, the magnitudes

of the rows of Table 19 compared vertically indicates the relative identi-

fiability of each of the associated parameters. Coefficients f32P f23' and

f are therefore the most easily estimated parameters. The magnitudes in
25

the columns of Table 19 compared horizontally indicate the relative impor-

tance of ,.ach of the associated measurements to the estimation of each of

the ats*oviate1 parameters. This indicates roughly where money should be

c r, ". i p}rove the accuracy ot the ma,urcments. Since the control loop

of I.-t Ive estimates of only f23 and f2, an adaptive ship path con-

tr:ior re(,pires high accuracy and low noise in the measurements of r' and

* . t is encouraging to note that tht measurement of the lateral offset

.s re]tivly unimportant in this context.

Ii ,,7i.htC.1 1 -- J:iSc.iated mv.at;urement

parame tr , ' r' -i
f2 o.67c 126.075 17.638 0. 080

' - f 9.838 195 . 550 274.758 1.247

f" 4.627 921.251) 131.861 0l.600

0.118 24. 397 6114.73 219.9)4H

f P. C06 1.213 V).3.I110 1.496

.f 0.0 0.032 3.715 0.31

atIfl. 19. Typical "Normalized" Optimal Parameter Fstimator Gain Matrix

A- I



5.6 Computational Requirements

As noted in the introduction to this section, the MVE ship parameter

estimator would require less than 100 dynamic storage locations in the

implementation. The estimator would also require very little CPU time.

The subroutine used in our work was not specifically designed to minimize

operations but was timed to require an average of only 12 milliseconds per

parameter estimation cycle on the University of Michigan Amdahl 470/V7

computer. This very small load on an onboard computer would make the MVE

parameter estimator an attractive candidate for the parameter estimator

component of an adaptive ship path control system. In such arrangement, the

MVE algorithm could be readily implemented in a time-sharing mode on a main

and general-purpose computer onboard a ship. It could also be programmed

in a dedicated minicomputer. This arrangement might be advantageous when

an independent and/or portable real-time parameter estimator is desired.
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I.

6. Conclusions

The research summarized in this report has concerned the development and

evaluation of techniques which could be utilized in adaptive path control

systems for surface ships in restricted waters. In this section, we will

review some of the principal conclusions and observations based on this

work.

* The example vessel used in this work was the Tokyo Maru, a 290m tanker,

for which sufficient hydrodynamic data was available from the work of Fujino.

The characteristics of this ship undergo significant changes depending upon

its operating condition and environment. This type bf ship is either course

stable or unstable depending upon water depth. Further, the longest time

constant of this ship is very long compared with the time scale of importance

in path control in restricted waters. The example vessel, therefore, reflects

many of the most challenging requirements for an adaptive ship path control

system.

* The basic concept of a two-loop adaptive path control system as shown in

'ig. L appears feasible. The inner or control loop performs the state

estimation and control generation continuously as a high priority task. The

outer or qain update loop can estimate the system parameters and calculate

upclated controller and state estimator gains at a slower rate or batchwise.

In qeneral, the two loops must function independently.

6 A very c-ffective control loop can be designed using random-walk, or more

.,rrectly Brownian motion, models for the unknown yawing moment and lateral

forze disturbances which act upon the ship. These controllers are effective

with Thort-term, zero mean disturbances and with more slowly varying, non-

zero mean disturbances. These controllers have the integral control property

necessary to accommodate bias disturbances without a constant offset from the

desired track. Severe disturbance transients such as the entrance to the

SNAME H-10 Panel ABC harbor (Fig. 5) would, however, require some type of

supplemental, anticipatory controller. The random walk disturbance model

control loops can be designed as statistical steady-state Kalman-Bucy filters

and optimal state feedback controllers using Potter's algorithm provided a

small numerical parameter is included in the design equations to eliminate

otherwise zero eigenvalues. Their performance is not severely degraded
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by changing ship coefficients. When designed using incorrect ship parameters,

the transient performance of the control loop is degraded but its nan steady-

state condition is unchanged.

* The Brownian motion process is a useful concept which can be used as a

model for disturbances or processes which are constant (bias) or contain

unknown, slowly varying components. The properties of the Brownian motion

process can be used to provide a p actical design approach for establishing

the diffusion coefficient of these models. Instead of estimating both a

correlation time and a variance to establish the power spectral density for

a first-order shaping filter model, the single modeling parameter, the

diffusion coefficient, can be estimated by eq. (65), (66) or (119) using

the expected rate of change or diffusion of the process being modeled.

t An adaptive ship path controller needs effective on-line estimation

of only two of the ten coefficients of the state equations which change with

ship conditions and envirornent. Adapting for changes in only f2 3 and f25

allows the recovery of the most important part of the transient response

performance which is lost by not using exact ship characteristics. Coeffi-

ient f2 3 is the coefficient of V3' and f2 5 is the coefficient of ', respec-

tively, in the r-equation. This fact should be recognized in the evaluation

of the effectiveness of parameter estimators intended for use in an adaptive

ship path controller.

* The degree of difficulty of the adaptive control problem depends on the

signal-to-noise ratio. For a surface ship, this ratio is very small when

viewed on the time scale of importance in restricted waters. As a result,

the adaptive path control of surface ships becomes a very difficult problem.

* An open-loop dither signal is required for successful ship parameter

estimation. During the estimation period, the control command has to be

independent of disturbances and the ship motion has to be maintained at a

sufficient amplitude. Adaptive path control can be achieved by performing

the parameter estimation phase and the path control phase alternately. This

creates a major tradeoff in design since the improved path following perfor-

mance achieved by having improved estimates of the ship coefficients must

offset the loss in path following performance needed to allow the estimation

of the characteristics. A "robust" ship path controller design which is
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insensitive to errors in the ship equations of motion would likely prove

superior.

0 The degree of estimation accuracy depends strongly on the relative

levels of information and noise (process and measurement). The amount of

information can be increased significantly by lengthening the dither signal

period and the length of time it operates. This, however, is restricted

due to the path control consideration. It was found that the square wave

rudder command dither signal of 0.5 rad. amplitude and 0.5 ship length

period operating for over 2 ship lengths gave reasonable results with the

linear ship model studied here. Design tradeoff studies would be needed

to establish the best tradeoff. In general, we used low levels of measurement

nr_:ie 6t demanded more parameter estimate accuracy than really needed by

the control loop.

* In very shallow water, the Tokyo Maru becomes so stable that the dither

signal used here has a relatively small effect on the ship. As a result,

there i3 less ship motion and a lower signal-to-noise ratio. Parameter

e stimaion is, therefore, much more difficult in this situation.

a The parameters f22' f23, and f2 5 in the r-equation are closely associated

with the shorter time constant of the ship which is about 0.4 ship length.

The parameters f32 , f33, and f3 5 in the q-equation are more closely associated

with the longest time constant of the ship which is about 10 ship lengths.

As a result, a short (0.5 ship length) dither period can be effective in

excitinq the ship in the shorter time constant mode allowing reasonable

estimation of parameters f2 2 ' f23 , and f2 5. The short dither period is much

less effective in exciting the longer time constant mode making estimation

of parameters f32 , f33, and f3 5 less effective. Longer dither periods which

would be needed to more effectively excite the longer time constant mode would

be incompatible with a path control objective. Fortunately, the control loop

only r,.ally needs accurate estimates of f2 3 and f2 5 to achieve an effective
level of adaptation.

e The choice of parameters and the availability of measurements are of

critical importance to the Weighted Least-Squares (WLS) parameter estimator.

Given a data window length acceptable in a path control application, the WLS

'ost fanction is extremely sensitive to the measurement noise and the system
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model. We found that all states must be measured and that all six of the

coefficients fij in the open-loop dynamics matrix and control distribution

matrix in eq. (71) must be included in the parameter vector. Since the c'ost

function is much more sensitive to external disturbances than ship coefficient

changes, the unknown external di turbancesmus;t also be included in the para-

meter vector. The WLS algorithm could not effectively handle linear combina-

tions of parampters or products of parameters so it was necessary to assign

the coefficients yi. in the disturbance distribution matrix assumed, constant

values.

W With a 2.5 ship length data window, the WLS parameter estimator can

effectively estimate the coefficients fij when the ship characteristics and

external disturbances are essentially constant during the data window loading

period. A major design tradeoff exists in the choice of the data window

length. With a longer data window and therefore a longer period of open-loop

dither signal operation, the information content of the data base is increased

allowing better parameter estimate accuracy but the ship is given a greater

offset from the desired path. The improved control loop performance achieved

with more accurate parameter estimates must offset the loss in path following

performance caused by the dither signal. With our experience to date, we

must conclude that the performance of the control loop designs studied in

Chapter 3 are good enough with incorrect ship parameters that we would not

expect an adaptive capability using a WLS parameter estimator to prove

worthwhile.

* The WLS parameter estimator could not effectively estimate the coeffi-

cients fij when either the ship characteristics or the external disturbances

changed significantly during the data window loading period. In path control

situations in restricted waters, both would be expected to change during at

2.5 ship length data window. The WLS parameter estimator studied here could,

however, be of value in other applications where constant ship characteristics

and disturbances could be reasonably expected.

* The Doesn't Use Derivatives (DUD) algorithm used here to minimize the

WLS cost function proved to be an effective and efficient search algorithm.

In retrospect, however, it requires an excessive amount of dynamic data

storage. This, it is more suited for an off-line application than for an
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on-line application as part of an adaptive system. rt did prove effective

for the purposes of this study. Alternative search algorithms with more

reasonable storage requirements are available for on-line applications. The

stopping conditions of any algorithm would have to be tuned to be compatible

with the noise content of the data window.

9 The Minimum Variance (MVE) parameter estimator can effectively estimate

the time-varying coefficients f2 3 and f2 5 needed by an adaptive path controller

when the ship is not subjected to bias disturbances. The algorithm is re-

cursive and highly efficient both in dynamic data storage and computation

time. The MVE algorithm requires ship motion to obtain information about

the ship's characteristics so the tradeoff associated with the use of an

open-loop dither signal exists with this method as it would with any alter-

native. The method does show promise and is worthy of further consideration

for possible use in an adaptive ship path controller.

* The principal weakness of the MVE parameter estimator as studied here is

.inability to accommodate bias disturbances. We initially tried to incor-

r, consideration of these disturbances by modeling the disturbances as

Et r-ian motion processes in lieu of white noise in the derivation of the

c sturbance power matrix F'Qwr 'T. This approach produces a disturbance

power matrix which grows continuously with time and this causes the parameter

estimator .Jain matrix to asymptotically approach zero. An alternative, which

c>1d not be included in the icope of this study, would be to follow an

a prcach parallel to that used with the WLS parameter estimator. The unknown

yawing moment and lateral force disturbances could be included as additional

iarameters; i.e. the parameter vector could be chosen as eq. (74) in lieu of

.(7;3) and the entire MVE algorithm could be rederived. We now feel this

should be successful and intend to study this possibility in future work.

* The three major design choices in the development of the MVE algorithm

are the estimation frequency Z, the assumed disturbance power spectral

densities qN and qy, and the parameter model diffusion coefficient matrix 1,.

The derivation requires that the parameters not be estimated more frequently

than every two sample times; i.e. Z>2. Our work showed little value in

estimating the ship parameters more often than Z=10 or about 2.4 seconds. An

even longer estimation period would probably be acceptable. The choice of
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the disturbance power spectral densities directly affects the speed of

response of the MVE algorithm. If they are assumed too high, the MVE

parameter estimator is much too slow to respond to be of value in a path

control application. The parameter model diffusion coefficient matrix 'D

:n te selected using the properties of the Brownian motion process as

reflected in eq. (119). This choice also affects the response rate of the

WVE parameter estimator. If the Oii are too small, the estimator cannot

follow more rapidly changing parameters. If the Oii are too large, the

estimator will be overly sensitive to noise and disturbances.

0 The consideration of the optimal MVE estimator gain matrices shows that

in order to effectively estimate the coefficients f23 and f2 5 needed by an

adaptive path controller the measurements r and are the most important.

The lateral offset from the path, which would be the most difficult to

*measu-ire accurately, is of much less importance. The development of an

adaptive ship controller should, therefore, emphasize accuracy and noise

reduction in the measurements of yaw rate and lateral velocity.
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